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Abstract

Compilers is a practical course. Its goal is to build a real compiler,
which compiles a high-level language down to the actual x86-64 machine
code and produces an executable that runs on student’s laptops. The
source language is Tiger’: a procedural language in the spirit of Pascal — or
C with arbitrarily nested functions. The compiler itself is to be developed
in OCaml.

The other goal of the course is to give a taste of modern software
development, specifically: test-driven development, version control, and
the stress on reading, comprehending and extending code rather than
writing from scratch.

The characteristic of the course is an iterative, incremental develop-
ment: we start with the most trivial source language, develop the full
compiler for it, and then keep extending the source language and the com-
piler in small steps, reusing the earlier work as much as possible. At each
iteration, we build a complete end-to-end compiler producing runnable
and testable executables, for a (progressively larger) subset of the source
language.

Another characteristic is the extensive use of tagless-final style, taking
the full advantage of extensibility afforded by it. The extensibility here
means reuse — of type-checked and compiled artifacts from the previous
increment — rather than copy-paste. The compiler is hence structured as
a stack of domain-specific languages, with parsing at the bottom and as-
sembly at the top. The languages are extended by adding new operations
here and there (and only occasionally by redirection).

Yet another feature is the attention given to names, or ‘variables’,
and associating attributes to them. Our approach, which readily permits
adding attributes at will and analyzing variable usage, may remind some
of algebraic effects.

We cover all standard material for the compiler course, from pars-
ing and type-checking to analyses, optimizations, calling conventions and
assembly generation — but in a quite non-traditional fashion.
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1 Introduction

This is a practical course. Besides building a complete, realistic compiler, one
of its goals is to give a taste of modern software development:

e test-driven development;
e pervasive use of version control; build pipelines;

e stress on reading, comprehending and extending code rather than writing
from scratch;

e explicitly spelled-out requirements.

1.1 Prerequisites

+ Familiarity with OCaml or the closely related F#

+ Light familiarity with C: We make the compiled code compatible with
C so we may write initialization and support code in C and reuse the C
standard library

+ Basic data structures (tuples, variants, lists) and algorithms on them

— No requirement to know the x86-64 assembly language beyond the basics
of computer organization

— No experience is assumed with parsing, type-checking, code-generation,

etc.

1.2 Development environment

The first task is to set up and test the development environment.



1.2.1 Operating system and environment

Windows Install WSL2. After installing WSL2, you obtain the Unix/Linux
environment. Therefore, when installing OCaml later, use that environ-
ment and follow the directions for ‘Unix installation’ (rather than for ‘Win-
dows installation’). Confirm that you have gcc (at least v11), git and GNU
make installed. (If they are somehow missing, install them. You won'’t be
able to install OCaml without gcc anyway.)

MacOS, Intel Install XCode, then Homebrew, and then make and git. Con-
firm the version of make (should be GNU make).

As an alternative to installing Homebrew, one can use a Virtual Machine
or container running Linux (distribution does not matter).

MacOS, Mac M (Apple Silicon) There are two choices. One is to install
Rosetta. Then install XCode, then Homebrew, and then make and git.
Its better that all toolchain (especially the compiler, gce or clang) be for
x86 64 architecture. One way to ensure it is to run all install commands
prefixing them with arch —x86 64. A better way is to open the terminal
in the rosetta mode: arch —x86 64 alacritty and run all commands from
there. You will use the same rosetta mode terminal to build the compiler,
run it and run the compiled executable — basically do all the work in the
class.! Our compiler (and development) will be under MacOS, using its
tools, but for the x86 64 CPU architecture.

As an alternative, install UTM https://mac.getutm.app/, using, as a
VM image, debian-12-nocloud-amd64.qcow2 (or newer) from https:
//cdimage.debian.org/cdimage/cloud/bookworm/latest/ (other dis-
tributions would also work). In that case, our compiler and development
will be under Unix/Linux.

You may use any editor/IDE you like. If you have not used any programming
editor yet, you may want to try VS Code. It is a modern editor with a good
support for OCaml, among other languages.

1.2.2 OCaml

OCaml is the language we use to write our compiler. OCaml is truly very good
for writing compilers: the first Rust compiler was written in OCaml; the refer-
ence Wasm implementation is in OCaml; Meta’s Hack language is developed in
OCaml. The quite well-known theorem prover Rocq (Coq) is written in OCaml
(another well-known theorem prover Isabelle/HOL is written in Standard ML:
OCaml’s close relative).

For this course we need OCaml version at least 4.14.1. We will only use the
standard library; no extra packages are necessary. For build, we use Makefiles

IFor configuring VS code, see https://stackoverflow.com/questions/70217885/
configure-ml-vscode-arm-but-with-a-rosetta-terminal
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at the very beginning, but then switch to a custom build pipeline. Therefore,
dune will not be needed.

installation (Windows) https://tarides.com/blog/2024-05-08-how-to-
setup-ocaml-on-windows-with-wsl/
To re-iterate, first install WSL2, open the WSL2 terminal and the install
OCaml as for Unix/Linux, not Windows!

installation (Mac, Linux) https://ocaml.org/docs/install.html, or
https://pl.cs.jhu.edu/fpse/coding.html
(You do not need to install any extra OPAM packages listed on that page,
although ocaml-lsp-server, merlin and utop can be very useful.)

reference https://ocaml.org/manual/index.html
books See [ 1, [ ]

other resources https://batsov.com/articles/2022/08/29/ocaml-at-first-
glance/

1.2.3 Git

Git is the de facto standard of software development. We will be using it ex-
tensively in this course.? First, install git and learn its basics. There are many,
many git tutorial available on the internet; there are also several books. We will
be using only the very basic git features (no branches, submodules, etc.). Specif-
ically, you need to be familiar with git status, git pull, git add, git commit —a,
git push. Also useful are git diff and git log —p —n. To make a repo, use git init
or git clone.

Second,

e make an account for yourself at https://bitbucket.org/ To access it
from your computer, you need either to create an APP password (click
on Help and read the documentation®) or register SSH keys. If you set
up the APP password, be sure to save it somewhere: you need to enter
it every time you pull or push to the bibucket. (SSH keys are quite more
convenient. )

e make a private repository for yourself, including your name or student ID
in the repository name. This will be your development repository for your
compiler.

e share that repository with me: e-mail address: oleg@okmij.org
Give me the write access to your repo.

2Adventurous may consider jujutsu, which is compatible with git: https://v5.
chriskrycho.com/essays/jj-init/
Shttps://support.atlassian.com/bitbucket-cloud/docs/create-an-app-password/
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Once I receive your invitation, I will share with you the class repo, which
contains the code for the class and these notes. Both will be extended as the
class progresses. Therefore, you may want to ‘watch’ that repository (that is,
get notified on updates by e-mail): set-up via bitbucket.

When you receive the invitation to join the class repo, reply to it, clone the
class repo and copy its directories (and also files .gitignore and Makefile.
common) into your repo. To test the setup, go to the scratch directory and
enter make there (on a Mac, enter make mac), which will try to build the code
in §2. If the make finished successfully and the built program sample works,
your set-up is done.

1.3 Exercises and Grading

This is a practical course. Each week there are 1-3 homework assignments:
exercises. Usually, one exercise is to write tests for a new compiler feature, and
the other is to extend the current compiler code to implement the feature and
make the tests pass.

The purpose of the exercises is to deepen the understanding of the compiler
code, to encourage thinking of implementation strategies — and to learn and
practice modern software development. There is no single right answer!

Besides the mandatory exercises, there are also optional exercises, often a bit
more challenging. Optional exercises do not have to be submitted. If submitted,
they will be graded as regular ones. There is also a possibility of projects, for
those looking for a challenge.

The exercises are graded on the scale 0-10, as a rule. Bonus points may
be given for particularly clever or impressive solutions. The course grade is
determined from the points you earn from these assignments. There is no final
exam.

Submission deadline Homework assigned on week N must be submitted by
the start of the N + 1-week class.

Submission guideline Each assignment will ask you to develop some code or
tests. All the development has to be done in your private bitbucket repository
that you have shared with me. I also share with you the class repository, which
contains the code covered in the class. Many assignments ask you to improve
that code.

As the first step, copy that code in your repo and immediately commit it.
Then start improving, as described in the assignment.

Overall, your answer to a homework should be in files or directories with the
specified names, committed into your bitbucket repository.

At the deadline, I clone your repo, compile your code and run it on your,
and perhaps also mine, tests. If the code fails to compile or fails your
own tests, you get 0 points. Therefore, be sure to run it yourself before
submitting.


.gitignore
Makefile.common
Makefile.common
scratch
sample

The grade and the comments, if any, are reported in the file grade.txt that
I commit to your private repository, in the same directory as the submitted
homework.

Important Read the assignment closely: at least two times A submission
that does not satisfy the assignment cannot be accepted. Please keep in mind
this course is about programming. Programming is talking with a computer.
A computer does not know what you mean: It only knows what you entered.
Even a one letter mis-spell in a program is often fatal. (One-letter mistakes
may create big problems also in real life: if you buy a plane ticket online and
misspell your name, even by one latter, you will be denied boarding the plane.)

Test before submission Submit only tested code. If the submitted code fails
to compile, you get 0 points. You also get 0 points if the submitted code fails
tests: ends up in an exception or infinite loop although given valid input.

Submitting code that fails to compile or fails the tests is called ‘breaking the
build’ and is regarded as one of the cardinal sins in software development. You
might want to search the net or YouTube for ‘breaking the build’ to see how
companies, or colleagues, treat those who break the build. Getting 0 points is
a comparatively minor punishment.

There is no single right answer On the other hand, if a submitted answer
satisfies all the conditions of the assignment, it will get the full 10 points (or
maybe more, if particularly clever or otherwise impressive).

2 What is a compiler?

First of all, what is a computer? I hope I don’t need to elaborate: every-
body knows. Everybody also knows that a computer has the CPU to execute
programs, memory to store programs and data, and some sort of 10 devices.
Programs are sequences of instructions for the CPU. What are they?

Here is an example.

48 83ec28e8
00000000 48894424 0848c744 24180000
000048c7 44241001 000000eb 18e80000
00004889 0424488b 04244801 44241848
83442410 01488b44 2410483b 4424087e
dc488b44 24184889 c7e80000 00004883

c428c3
The numbers you see are the instructions, for the modern Intel/AMD CPU,
called x86-64 architecture. (See [ ,b] for introduction and

[Ed.] for complete reference.) It is currently the most widely used architecture
for desktop and laptop computers.?

4If you own a recent Mac, you are using a different, ARM architecture. Still, it has the
x86-64 emulation mode.


grade.txt

The numbers are hexadecimal numbers (do you know what are they?) and
represent instructions. Can anyone tell what the instructions are and what does
this program do?

For example, the number 4889C7 here instructs the CPU take data from the
register rax and put into the register rdi. The next instruction, staring with e8,
is the function call. We will talk about these instructions in more detail in §4.1.

In old times, people indeed programmed computers by manually entering
these numbers into memory, using switches — as was the case for Altair, the
first commercial Personal Computer in the world (Altair 8800 debuted in 1974).

OUT HLTA STACK WO  INT

war Hoa (RS A4 A3 A12 A1 A0
o [38] , (A5 [Ad) A3  [Az

®© [¢ (&)

The original Altair had no display or keyboard. What you see is the entire user
interface. One enters a program using switches, and reads the results by dis-
playing memory bytes (bits) on the indicator lamps.

I vouch for that: I myself programmed that way, for a different computer,
when I was a student. I could look at such list of hexadecimal numbers and see
the program and understand what it does. It is not as difficult when you learn
and get used to it. Still, there are lots of bothersome things, like offsets in jump
instructions and figuring out the target of a jump. (see EB18 at the 3d line near
the end; there 18 is the offset).

To help with such tedious tasks, and also to make the program more readable,
assembly language was invented. Here is the same program in assembly.’

.globl ti_main

.type ti_main, @function
ti_main:

subq $40, Yrsp

call read_int

movq %rax, 8(Jrsp)

5The listing uses the so-called AT&T notation (also called GAS notation) common on Unix
(including MacOS) and Linux. There is another, nearly opposite, x86-64 assembly notation
called Intel or MASM. It is typically used on Windows and in Intel documentation. In this
class we stick to the GAS notation.



movq $0, 24 (%rsp)
movq $1, 16(%rsp)

jmp .L5
.L6:
call read_int
movq %rax, (hrsp)
movq (%rsp), %rax
addq %rax, 24(%rsp)
addq $1, 16(%rsp)
.L5:

movq 16 (Y%rsp), %rax
cmpq 8(%rsp), %rax

jle .L6

movq 24 (%rsp), ‘hrax
movq frax, %rdi
call print_int

addq $40, Yrsp

ret

This is a good place to recall how a CPU executes the instructions: the main
CPU loop:

1. fetch the instruction pointed out by the instruction pointer (rip);
2. decode the instruction and increment rip;

3. execute the instruction, modifying registers, memory or CPU flags; re-
peat. A branch instructions changes rip, by loading a new address or
adding/subtracting an offset.

4. repeat.

For more details, see the simple Intel x86-64 emulator in scratch/emulator.ml
of the class repository.

The assembly code is more readable, isn’t it? An assembler is a program
that translates code in this notation to the numbers we have seen earlier. The
translation is straightforward: using the dictionary that relates a string such as
movq %rax, %rdi to the corresponding number, 4889C7 in this case. Jumps like
jmp and jle interrupt the sequential, instruction-after-instruction execution and
transfer control to some other place in the instruction sequence. In assembly,
the target of a jump in assembly is denoted by a label. The corresponding
instruction needs a distance (offset), which the assembler also computes. This
is very welcome, since it is very tedious to do by hand (I did it, and I still
remember the tediousness).

Still, this assembly code, although quite more readable than numbers, is
rather difficult to comprehend. Anyone can tell what the program does? It is
also difficult to write such assembly code, because it is so low-level. One have
to think of so many details: which registers to use and when to reuse, what


scratch/emulator.ml

register or stack location like 24(%rsp) means what, figure out how much space
for temporary data the program needs and reserve it at the beginning and free
at the end (see subq and addq instructions, etc.)

And so were invented higher-level languages, to make programs easier to
comprehend and to write. The first higher-level language was FORTRAN, which
means FORmula Translator. (FORTRAN was the first programming language
I learned, in high school in late 1970s). The idea was to write formulas in a
conventional math notation. Many, many more programming languages were
developed since FORTRAN. In this class, we will be dealing with a language
called Tiger’: a dialect of Tiger developed in [ ]. Tt is a high-level
procedural language in the spirit of Pascal or C. You can think of it as C
with nested functions, and with keywords instead of curly braces. Our running
example looks in Tiger’ as

let
val n := read_int()
var sum := 0
in
for i:=1 to n do
let val v := read_int()
in sum := sum + v end
done;
print_int(sum)
end

Has it become easier to understand? Anyone can tell what the program does?
We also need a program to translate such easier to understand code to the
assembly. This program is the compiler. The overall flow is hence as follows.

compiler assembler linker
‘ Tiger' }—>{ Assembly }—>{ Object code }—>{ Executable ‘

The linker, not mentioned earlier, is needed to find and pull in the code for
library functions (like read_int) and put their address into the corresponding
call instructions. The complete executable also needs start-up code, which the
linker also arranges for.

Creating a compiler from Tiger’ to x86-64 is the goal of this class. We shall
indeed compile the above Tiger’ code and obtain the assembly, very similar to
the one shown before, with identical functionality.

2.1 Incremental approach

The characteristic of this course is incremental development, in many small
steps. As pointed out by Ghuloum in [ |, traditional compiler
courses teach a compiler one pass at a time; “many of the issues that a compiler
writer has to be aware of are solved beforehand and only the final solution is
presented. The reader is not engaged in the process of developing the compiler.”

10



There is too much focus on individual passes and not enough focus on the “big
picture”.

Like [ ], this course is different. Our development is by extend-
ing the complete, working compiler one small step at a time. At each step we end
up with the working compiler, for a subset of the source language. Specifically,
the methodology (| ) , §2.6]):

1. choose a small subset of the source language that is easy to directly compile
to assembly;

2. Write the extensive test cases;
3. Write a compiler for the chosen subset to the assembly language;
4. Run all the tests;

5. Base on the experience, refactor or optimize. Make sure the tests still
pass;

6. Enlarge the subset of the source language and extend the compiler corre-
spondingly, refactoring as needed;

7. Repeat from 2.

In contrast to [ ], we rely on the tagless-final approach
[ ], which makes extensibility easy. We hence use the motivation of Ghuloum,
but apply it diametrically differently. (Our source language is also different,
Tiger’ rather than Scheme.)

3 Introduction to tagless-final style and OCaml
reminder

OCaml is the language used in this course to write the compiler and keep ex-
tending it. OCaml is similar to F# with which you should be familiar from
earlier classes. This section is a brief reminder, stressing the module system
(quite more powerful, compared to F#), which we will be using extensively.

The characteristic of the course is treating a compiler as a stack of DSLs.
DSL — Domain-Specific Language — is a relatively small language designed for a
specific task and hence has the vocabulary, syntax, idioms, semantics tailored for
that task [ ]. Broadly speaking, DSLs are conlangs — at least that is
how we would look at them. DSLs can be either standalone or embedded. The
latter are DSLs incorporated into a larger, general-purpose language — called
host language or metalanguage — and piggy-back on its its syntax and some
vocabulary, but still possessing their own semantics and specialized vocabulary.
One may say that an embedded DSL is a jargon of its host language.

6 Actually, F# started as a dialect of OCaml, but later diverged.

11



This section also introduces the so-called tagless-final style [ ] of
embedding domain-specific languages (DSL) and writing their interpreters and
transformers. The characteristic of the tagless-final style is extensibility: the
ability to add features to a DSL one-by-one, reusing the already written code.
As we shall later see, we treat Tiger’ as a DSL, and the Tiger’ compiler as one of
its interpreters. The assembly and the intermediate languages are also treated
as (embedded) DSLs. The extensibility of interpreters is particularly valuable
in the incremental approach.

3.1 A simple embedded DSL and its interpreters and trans
formers

We start with the simplest DSL (whose extension will be the homework assign-
ment). Let’s call it Lang. It has only integer literals and the addition operation.
Here are a few sentences, or expressions, of Lang: each on a separate line in a
column.

1 0
-1 (4 +0)
((4 +0)+-1) (-1 +-1)
(440 + (-1 +-1) (((4+0)+-1)+-1)

In other words: (i) an integer is an expression; (ii) connecting two existing
expression with the plus sign (and putting parentheses around) makes a new
expression. With fewer words, Lang’s language definition can be stated in the
form of a context-free grammar:

S — integer
S—=(S+59)

Let’s embed Lang in OCaml: that is, represent its sentences in the form
of OCaml expressions. OCaml is a functional language, so the fundamental
operation is application. It seems appropriate then to represent Lang’s sentences
as OCaml applications. Assume a function int. Then the application int 1 can
be used to represent the sentence 1 of Lang. Assume a two-argument function
add. Then the application

add (add (int 4) (int 0)) (add (int (—1)) (int (—1)))

could represent the sentence ((4 + 0) 4+ (=1 + —1)), which is our running ex-
ample.

If we just enter the above expression into OCaml’s top level, we immediately
get an error that add is not defined. Saying to ourselves ‘assume add exists’ is not
enough: we have to say it to OCaml. As the first step, we have to consider the
types of int and add. Lang’s sentences are represented as OCaml’s applicative
expressions. All expressions in OCaml (that is, the ones accepted by OCaml
(compiler)) have a type. OCaml expressions representing Lang must also have
some type. At this point, of describing the language, we do not care what
exactly it is. Therefore, we leave it abstract, call repr. The functions int and
add then have the types

12



int: int — repr
add: repr — repr — repr

To formally declare to OCaml that int and add are assumptions, we make them
function arguments. After all, a function is an implication: given the value of
its arguments it produces the value of its body. Hence in full, the sample Lang
sentence is represented by the following OCaml expression:”

fun (type repr) (int:int—repr) (add:repr—repr—repr) —
add (add (int 4) (int 0)) (add (int (—1)) (int (—1)))

This is a tagless-final embedding of Lang — in a preliminary form at least.

The obvious drawback is the need to enumerate the constructor functions
int and add all the time (more realistic languages have quite more constructors)
and remember their argument order, which is not really important. It would
also be useful to group int and add with their types, and to finally be able to
attach the name Lang. OCaml’s module signatures is the facility to do exactly
such grouping.

Here is Lang’s definition in the form of the module signature, which lists the
language operations (sentence constructors) and their types (i.e., arity).

module type Lang = sig
type repr
val int: int — repr
val add: repr — repr — repr
end

The abstract type repr stands for some representation of language expressions.
The type of int says that we can make DSL expressions from OCaml integers,
like int 4. The type of add says that given two DSL expressions (remember, they
are represented as values of the type repr), we can make a new DSL expression:
their sum. Note how closely Lang matches the context-free grammar of the
language shown earlier. One may say therefore that Lang defines the syntaz of
our DSL.
Using the signature, the sample Lang expression is written as

module Ex1(L:Lang) = struct
open L
let res = add (add (int 4) (int 0))
(add (int (—=1)) (int (—1)))

end

Here, L is the name of some implementation of the signature Lang: that is, some
Lang interpreter. The expression open L brings the operations it defines — int
and add — into scope, so that we may use them (without needing to attach L.
prefix all the time).

"It may be surprising that a very similar expression appears in the paper that introduced
ML, the predecessor of OCaml, back in 1978 [ ]. Perhaps one should not be
too surprised: after all, ML was designed for representing languages. That is what ML stood
for: Meta Language.

13



To evaluate that expression we need an implementation of the Lang signa-
ture. Here is one:

module Eval = struct
type repr = int
let int x = x
let add = (+)

end

It is an interpreter of our DSL, interpreting its expressions as familiar addition
expressions over integers. Hence the representation type is int: the value of DSL
expressions in this interpretation. The Eval interpreter maps DSL operations di-
rectly to the corresponding OCaml operations: Eval is a so-called meta-circular
interpreter for the tiny subset of OCaml. To evaluate the sample Ex1 we in-
terpret it with the Eval interpreter. That is, we apply Ex1 to Eval, effectively
evaluating Ex1 with Eval being the implementation L of Lang:

module M = Ex1(Eval)

and see what res has evaluated to
M.res

which is 2: the meaning of Ex1 in Eval as an OCaml integer. More compactly —
as a single line and single expression — the interpretation of Ex1 can be written
as

let module M = Ex1(Eval) in M.res

Lang hence may also be viewed as the signature of the DSL interpreters,
which give a particular meaning to DSL expressions.® Eval is not the only pos-
sible interpreter of Lang. We way also interpret DSL expressions as strings, so to
display them. The meaning for an expression is hence its printed representation:

module Pp = struct
type repr = string
let int = string_of int
letaddxy="(""x""_ 4+ "y ")
end

Interpreting the same Ex1 using Pp, as
let module M = Ex1(Pp) in M.res

now gives the string " ((4-+.0)o+(—1.+.—1))".

Besides evaluating DSL expressions we may also want to transform them.
The transformation in the tagless-final style can be viewed from two different
viewpoints. As a lead-up, let’s consider yet another interpreter. Like Eval it
interprets an expression in Lang as an integer: the same integer as Eval but
with the opposite sign:

8In the graduate school you may learn that a Lang implementation specifies a denotational
semantics for our language: repr defines the domain, and int and add give the meaning to DSL
integer literals and the addition in this domain. The denotation for complex expressions is
determined compositionally, from the denotations of their sub-expressions.
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module NegEval = struct
type repr = int

let int x = —x
let add = (+)
end

An integer literal is interpreted as that number with the opposite sign. For add,
we used the fact that —(z 4+ y) = (—z) + (—y): that is, if we merely add the
negated expressions we get the negated sum. The running example

let module M = Ex1(NegEval) in M.res

is interpreted as —2: indeed, the opposite of the Eval interpretation.
The interpreter NegEval was written from scratch. Let’s try to write it in
terms of Eval, reusing (however little) its functionality:

module NegEval = struct
type repr = Eval.repr
let int x = Eval.int (—x)
let add = Eval.add
end

We could have also written let int x = — (Eval.int x). But in this case we have
to know that Eval.int returns an integer — but in the former case we did not
have to. Therefore, it is more general and can be generalized, by abstracting
out Eval:

module Neg(F:Lang) = struct
type repr = F.repr
let int x = F.int (—x)
let add = F.add

end

Neg is a parameterized interpreter: it interprets Lang expressions in terms of
another interpreter, F (from ‘From’). On the surface of it, Neg is an interpreter
transformer: it takes one implementation of Lang and produced another imple-
mentation. We may hence transform the earlier Eval and Pp implementations
and use the result to interpret the same Ex1, for example,

let module M = Ex1(Neg(Eval)) in M.res
let module M = Ex1(Neg(Pp)) in M.res

The result is easy to imagine. Although ‘negating’ Eval gives us back the NegEval
that we started with, Neg(Pp) does shows something new. We can ‘negate’ any
Lang interpreter.

We also confirm that

let module M = Ex1(Neg(Eval)) in M.res
let module M = Ex1(Eval) in M.res

indeed give the opposite results.
Dually, Neg may also be regarded as an ezpression transformer. Here is the
Neg-transformed Ex1:
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module Ex1Neg(F:Lang) = Ex1(Neg(F))

Ex1Neg has the same type as the original Ex1l: given an interpreter Lang it
computes the meaning of res in that interpreter. That is, Ex1Neg is a tagless-
final representation of a Lang expression — namely, the expression in which all
integer literals have the opposite sign. We could have written that expression
by hand

module Ex1Neg'(L:Lang) = struct
open L
let res = add (add (int (—4)) (int 0))
(add (int 1) (int 1))
end

Neg hence accomplishes an expression transformation: of flipping the signs
on integer literals. The very form of Neg makes it clear:

module Neg(F:Lang) = struct
type repr = F.repr
let int x = F.int (—x)
let add = F.add

end

Neg flips the signs of int literals and leaves add as is.
The transformed expression can be interpreted with the existing Eval and
Pp interpreters, or even the Neg-transformed interpreters:

let module M = Ex1Neg(Eval) in M.res
-2

let module M = Ex1Neg(Pp) in M.res
"((—4-A40) A (14-21))"

let module M = Ex1Neg(Neg(Eval)) in M.res
2

(The evaluation result is shown, indented, underneath each expression.) The
pretty-printing of ExINeg confirms that it is the Ex1 expression with flipped
signs on the literals.

3.2 Separate compilation: making a project

We further ‘modularize’ our DSL development, arranging the DSL definition,
interpreters, transformers, and the testing script each in a separate file. Look
in the directory tfintro of the class repo. It has the typical organization for our
projects. It always has the file OREADME.dr, which describes the project and
explains the other files there. There is also Makefile, which tells how to make
the project.

Let’s look at OREADME.dr and examine the files mentioned therein. The file
lang.mli contains:

type repr (* representation type (abstract) *)

(* Two operations of the language *)
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val int: int — repr
val add: repr — repr — repr

which is the content of module type Lang introduced earlier. In OCaml, a file
with the .mli extension such as lang.mli is treated as a module type (signa-
ture) declaration: as if module type Lang = sig ... end were wrapped around
it. That is, an .mli file is a signature declaration that can be separately compiled
(the compiled file has the .cmi suffix). The signature name is derived from the
file name by capitalizing its first letter. After compiling lang.mli, the signature
it contains can then be referred to as module type of Lang.
Likewise, the file eval.ml contains:

type repr = int

let int x = x
let add = (+)

which is the content of the earlier module Eval. In OCaml, a file with the .ml ex-
tension such as eval.ml is treated as a module declaration: as if module Eval =
struct ... end were wrapped around it. The module name is the file name
with the first letter capitalized. After compiling eval.ml (which gives the
eval.cmo file), we can refer to its content as Eval.int, Eval.add, etc. (The com-
piled eval.cmo have to be linked in into the executable — or, if using the top-level
interpreter, loaded by the #load directive.)

Alas, no straightforward wrapping exists for functors. The contents of neg.
ml is:

module Neg(F:module type of Lang) = struct
type repr = F.repr

let int x = F.int (—x)
let add el e2 = F.add el €2
end

which is the module Neg containing the functor also named Neg. To refer to
the functor, we have to say Neg.Neg.
Please pay particular attention to ex1.ml:

module type Lang = module type of Lang

module Ex1(L:Lang) = struct
open L
let res = add (add (int 4) (int 0))
(add (int (—=1)) (int (=1)))

end

let x = let module M = Ex1(Eval) in M.res
let _ = assert (x=2)

let x = let module M = Ex1(Pp) in M.res
let _ = assert (x =" ((4-+-0)-+-(—1-+-—1))")
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module Ex1Neg(F:Lang) = Ex1(Neg.Neg(F))

let x = let module M = Ex1Neg(Eval) in M.res
let _ = assert (x= —2)

let () = print_endline " All_Done”

(The first line introduces the abbreviation Lang for module type of Lang.) The
file is not just an example of using the DSL. It also contains assert statements,
that check the results match expectations. In case of mismatch, assert will crash
the program. Therefore, ex1.ml is also a regression test: if running it finishes
normally, printing “All Done”, there is some confidence things work as expected.
If it fails with an error, we have to investigate.

Exercise 1. Extend the language with some other operation, and correspond-
ingly extend the interpreters Eval, Pp and Neg. Write an example that uses
the old and the added operations, and try interpreting it in the extended inter-
preters.

In more detail:

e Copy the tfintro directory into your repo.

e Add new files: lang2.mli (language extended by you), eval2.ml (ex-
tended Eval interpreter), pp2.ml (extended Pp interpreter), neg2.ml (ex-
tended Neg transformer), ex2.ml (with the tests that cover your added
feature, and also the tests checking that the earlier features are not broken
by your additions).

e Make sure that the regression test ex2.ml passes.

e Confirm on a sample example(s) that in the extended language as well,
evaluating using Neg2(Eval2) gives the result opposite to that of the Eval2
evaluation.

e Add the ex2 target to Makefile and update OREADME.dr correspondingly.

By the submission deadline, the tfintro directory in your repository must
contain the above mentioned files (in addition to the files copied from the class
repo’s tfintro) and the updated Makefile, OREADME. dr.
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4 Making the compiler

We now build the compiler for Tiger’, in many small steps.

4.1 The simplest source language

All the code for this section is in the directory stepl in the class repo. Fur-
thermore, the directory util contains commonly used utility code. Copy both
directories into your private repository. Compile the utility code by typing make
while in util directory.

As in §3, we start with the simplest language: in fact, even simpler. Our
first language to compile has only integer literals. To be precise, see Spec. 1.

Specification 1. Our compiler is to read a source file that contains a single
signed 64-bit integer. If the source file does not contain only a single integer,
or contains a signed integer that does not fit within 64-bits, the compiler must
report an error. Otherwise, it is to produce an assembly code and, eventually,
an executable that, when run, prints the integer that was in the source file.

Although the source language cannot be any simpler, its compilation, albeit
trivial, has lots of minute, bothersome details. Building a running executable
does take a bit of work.

4.1.1 Printing an integer, in Assembly

How to write an assembly code that prints an integer? Especially if one does
not know any assembly? Let’s ask something that does know: for example, the
C compiler. Here is a simple C program that prints a 64-bit integer, —42.

#include <stdio.h>
#include <stdint.h>

int main(void) {
int64_t x = —42LL; // A sample integer
printf(" %lld", (long long int)x);
printf("\nDone\n");
return O;

}

Our compiler has to create a similar code, but in Assembly. Looking at the code
closely, we clearly see the finalization part (the last three lines). The first printf,
for printing a 64-bit integer, probably could be separated in its own function;
we only need to generate the call to it. All in all, we can partition the code
into the part that deals with setting up and clean up, and contains the useful
utilities like print_int.

#include <stdio.h>
F#include <stdint.h>

// Main Tiger function
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extern void ti_main(void);

void print_int(int64_t x) {
printf(" %lld", (long long int)x);

int main(void) {
ti_main();
printf(" \nDone\n");
return 0;

}

One can expect this code to be roughly the same no matter what Tiger’ program
we are to compile. This part may remain in C: see init.c in the repo.

The part that our compiler is really responsible for can be represented by the
following C function. Let’s call it ti_main. It is invoked by the set-up/clean-up
code init.c.

#include <stdint.h>
extern void print_int(int64_t);

void ti_main(void)
{ print_int(—42LL); }

Our compiler has to produce something like that, but in Assembly. To learn
what assembly code to generate, let’s make a C compiler generate it for us
(by passing the flag —S) and look at the result. The cleaned and commented
assembly code is as follows (see the file clean_int.s):"

# Beginning of the code
.text
# The name (label) defined below is global (visible outside this file)
.globl ti_main
# This name is a function name (that is, it points to code)
.type ti_main, Q@function
# The declaration of the name itself
ti_main:
# x86-64 ABI, stack alignment: see the text
subq $8, Y%rsp
# move -42 to the argument register
movq $-42, Yrdi
# call the external function
call print_int
# restore the stack
addq $8, Y%rsp

9The listing looks a bit different on a Mac, since MacOS uses a different executable file
format and hence different conventions for naming sections and global identifiers sigh. We
will have to adapt to it later.
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init.c

# return

ret
Most of the code is self-explanatory: see [ ,b] for a brief but suf-
ficient reference, and [Ed.] for the complete reference. It is essentially

the invocation of print int, passing it the number to print. According to the
x86-64 Application Binary Interface (ABI), the first argument to a function is
passed in the register rdi (see [ ). Therefore, our ti_main loads the
number into the register and invokes print _int. We also see the mysterious subq
and addq instructions, adding and subtracting 8 from rsp, seemingly for no rea-
son. We shall see the reason later, when we talk about the stack in more detail.
For now, let’s just accept that it is a part of function entry/exit code, again
dictated by the ABI conventions.

With the above assembly code as a template, we write our first compiler:
file compiler0.ml, which takes an input stream and produces the assembly code
file.

I insist on writing type signatures of all top-level functions (perhaps
except those extremely small), in one of the two styles (see the code).

The code takes the ‘template-base code generation’ to the heart. It is really
just the template substitution, using printf. It is very similar to the familiar C
printf. In particular, characters ‘%’ in the format string that are meant to be
printed literally have to be doubled. Unlike C however, if you forget it, you get
a type error.

let compile (ich:in_channel) (och:out_channel) : unit =
Scanf.fscanf ich " %d” @@ fun n —
Printf.fprintf och {q|
text
.globl ti_main
.type ti_main, @function
ti__main:
subq  $8, %%rsp
movg  $%d, %%rdi

call  print_int
addq %8, %%rsp
ret

la} n

Here, {q|...|q} is the alternative OCaml syntax for string literals, suitable for
multi-line strings. This code is not only simple but also can be tested right away,
at the top level: compile stdin stdout. Its drawback is that it is too simple: too
specific and hard to generalize. And generalize we must, already, to account for
MacOS, whose executable format is a bit different.

4.1.2 Assembly as a DSL and writing a simple but real compiler

Let’s look at the assembly as a DSL: as a simple language (see §3, DSL as a
jargon). What words and phrases do we need to be able to write the simple
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ti__main assembly code in the previous section? We need to build instructions
(function calls, moving a number into %rdi); compose them into a sequence; and
to turn an instruction sequence to the code for the ti__main function, wrapping
into the suitable prologue and epilogue. And we need to write the complete
code into a file. Hence we come to the following interface (see asm.mli).

type instr (* abstract *)
val (@) : instr — instr — instr (* concatenate instructions *)

val call : name — instr

type register (* abstract *)
val rdi : register

type operand (* abstract *)
val imm : int — operand (* immediate value *)
val reg : register — operand

val movq : operand — operand — instr
val make_function : name — instr — instr

val write_ file : out channel — instr — unit
Using this interface, the compiler code becomes

let compile (ich:in_channel) (och:out_channel) : unit =
let n = Scanf.bscanf (Scanf.Scanning.from_channel ich) "%d" Fun.id in
let open Asm in
(movq (imm n) (reg rdi) @ call "print_int") [> make_function "ti_main” [>
write_file och

We can try to compile it (see the target comp_compiler).

Obviously, we need an implementation of the Asm interface: see asm.ml. It
realizes the abstract types instr, register and operand as mere strings, and takes
some care to print the code prettily. The implementation is a good place to take
care of the differences between Unix/Linux/WSL and MacOS platforms. These
platforms have different executable code formats (ELF and Mach-O, resp.) and
slightly different ABI. The main differences are: the MacOS assembler does
not accept the .type directive; the names of global symbols must begin with an
underscore. These differences are isolated in asm.ml; the rest of the compiler
does not need to know about them.

How to find what platform we are compiling for? We may try to discover via
a run-time test (e.g., uname —s). The easiest, however, is to set this information
at the configuration time — as done in all compilers to my knowledge. To this
end, we add the file config.ml with the relevant configuration data, prepared
by a configuration tool: at present, by the compiler writer.

Finally, we need to arrange to invoke ti main and to implement print_int.
That is the job of the ‘run-time’ system, so to speak, the file init.c that we
talked about in §4.1.1. We also have to assemble (invoke assembler on) our
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emitted assembly code, and link it with init.o and the code to initialize the C
standard library that we are using. It is a lot of work. Luckily, we can leave all
of that to gcc (OCaml does this too: it is a popular technique in general):

gcc compiled code.s init.o

Finally, we need the driver.ml that puts everything together: accepts argu-
ments from the command line, opens needed files, invokes the compile function
and arranges the build of the final executable. It has lots of error handling:
when the input file is not given, when the input file does not exist, when a
syntax error is detected, when the file to output the assembly code could not
be opened, or when the build failed for some reason.

The target tigerc in the build script (see §4.1.4) links everything together
and builds the compiler: Build/tigerc. If we write the string ”-42” into a file
progl.tg and invoke

Build/tigerc progl.tg

we obtain the executable file Build/a.out, executing which prints —42.

If we examine the produced a.out using nm a.out or objdump —x —d a.out
we see ti_main that we generated. We also see a lot of other stuff, needed to
make the program to run. Note _start, which is invoked by the OS kernel to
start the program. After a lot of initialization, it eventually calls main, which
calls our ti_main. Luckily all this other stuff can be entrusted to gcc (the
toolchain), and we only have to concentrate on generating the assembly code.
Most of other compilers take a similar approach.

4.1.3 Testing a compiler

Needless to say, we must test the compiler. We need both positive tests (correct
programs should be accepted, compiled and run correctly) and negative tests
(wrong programs should be rejected with an appropriate error message).

The first thing to test is the compiler invocation itself. The compiler, the
tigerc command, expects one argument, the file name with the source program.
Therefore, tigerc should complain if invoked without arguments (or if invoked
with a non-existent file, for example). Let’s try: Build/tigerc.

Mostly we will be testing compilation. For example, the program 0 is correct
and should compile. To verify, we create a temporary file, say, /tmp/al.tg
containing 0 and pass it to the compiler:

Build/tigerc /tmp/al.tg

The command should finish without errors, producing Build/a.out, running
which should print 0 followed by Done. On the other hand, the program xxx
should clearly be rejected.

Running the tests by hand is very cumbersome. The file util/expect.ml
implements a simple testing framework, in OCaml, with four main functions:

test command cmd Execute the command c¢md and return its output or the
failure indicator, to be analyzed by expect or expect fail below. Here, cmd
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is a list of strings: the head is the command itself (the file name), followed
by arguments, if any.

test it inp cmdf Execute the given command on the given input and re-
turn its its output or the failure indicator, to be analyzed by expect or
expect_fail below. Here, cmdf is a function that accepts a file name and
returns a list of strings: the command to run and its arguments; inp is
a string. The function test it creates a temporary file, writes inp to it
and passes the file name to c¢mdf. It then runs the resulting command
(specified as a list of string) as test_command above.

expect expected res Check that res, which is the result of test it or test command,
indicates the successful completion of the command, and check that its
output matches the string expected.

expect_fail res Check that res, which is the result of test it or test command,
indicates the failure of the command.

The functions expect and expect failure crash the program if their check fails.
The earlier check that 0 is the correct program is hence automated as follows:

non

let tigerc = Filename.concat " Build” "tigerc”
let execf = Filename.concat " Build" "a.out”
let cmd fname = [tigerc; fname]
let =

expect """ @Q test_it "0" cmd;

expect "0\nDone” @@ test_command [execf]

This OCaml code does exactly what we did before by hand: creates a temporary
file; writes the string "0" into it; runs Build/tigerc passing the file name as the
argument; tests that command finishes successfully with no output; runs the
command Build/a.out with no arguments; checks that it finishes successfully
and outputs 0 and and Done.

The following OCaml code verifies that the program xxx is indeed rejected:

let =
expect fail @@ test it "xxx" cmd

The file test_script.ml is the test script containing the above tests (and
a few more). It is executed by the build target test (see below). It should finish
without errors, printing “All Done” at the end.

4.1.4 Build system

In this class we will be using a dedicated build system, which one may think
of as a version of make: with all the needed facilities (such as build directory,
dealing with the source code spread around many directories, etc.) but without
their complexities. One may read the rationale in the file util/build.ml, which
is the implementation.

To use the build system, first compile all the code in the util directory.
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In our build system, all the built artifacts — compiled code such as .cmi and
.cmo files, tigerc itself, etc. — are stored in a special build directory, called Build.

Check that your copy of the compiler code (e.g., stepl directory) contains
Build as a subdirectory. If not, make it.

The build script is an OCaml script build.ml. It is meant to be invoked as
is: ./build.ml. On some platforms, invoking the script like this may cause errors.
In this case, run this script as ocaml build.ml.

The interface is the same as make: the script accepts the list of targets to
make, and makes them in the specified sequence. For example:

./build.ml tigerc test
or, on some platforms
ocaml build.ml tigerc test

The list of targets may be empty, in which case the default target is built (which
is usually tigerc). In this class, we typically use three targets: tigerc to build
the compiler and the run-time system, test to run the tests, and clean to clean
everything up.

The build script build.ml is a regular OCaml file, and can be edited as
such. One should particularly note three definitions. First, compiler manifest
lists all the source files needed to build the compiler, and how to build them.
The order is important. (In fact, the order is the linking order of the files).

let compiler_manifest = build_all |
existent "../util /util.cmo”;
ocaml " config.ml”;
ocaml "asm.mli";
ocaml "asm.ml";
ocaml " compiler.ml”;
ocaml "driver.ml";

]

The argument of build all is a list of rules. The rule existent checks to see that
the file (../util/util.cmo in the above example) already exist, reporting an error
if does not. The rule ocaml is to compile the given .ml or .mli file by the OCaml
compiler. Later we shall see that the rule has the optional argument “rename,
used as:

"o~

ocaml "../step21/lang.mli” “rename:"lang_ 21"
ocaml "../step21/pp_ast.ml” “rename:"pp_ast_21"

For example, the former first renames ../step21/lang.mli to Build/lang_21.mli
before compiling it (which produces Build/lang_21.cmi: all built artifacts go
to the Build directory). Further rules include ocamllex, ocamlyacc (for lexer
and parser generation, resp.), cc for compiling C code and link for linking. For
example,

let tigerc = link “out:"tigerc" compiler manifest

is the rule to link all files built by compiler manifest into the executable named
tigerc. The earlier build all is also a rule: collecting several rules into one.
Another important definition in the build script is
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let runtime_manifest = build_all |
cc "init.c”;

]

which is the rule to compile the files that make the Tiger’ run-time system.
Finally,

let tests = test [
"test script.ml”;

]

is the rule that runs the listed test scripts, invoked in building the target test. As
we extend the compiler, we add new files to compiler manifest, runtime manifest,
and tests lists. Typically, one would not modify anything else in the build.ml
script.
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4.2.6 Types

In Ex. 7, you must have faced two problems. First, how to print the result,
which could be either a number or true/false. How to chose which format to
use? Second, what to do about Tiger’ programs like - true, not 1, — is_zero x?
They are all well-formed according to the grammar, can be parsed and pretty-
printed. Evaluating or compiling them, however, is puzzling. Do they even
make sense? To be sure, one may try to give them some sense (e.g., to treat
true as 1 and false as 0, as C or APL do). On the other hand, second-guessing
the programmer tends to produce surprising results and sweep bugs under the
rug, where they are quite more difficult to find.'? It is not for nothing that most
programming languages do distinguish booleans and integers.

Sentences that are well-formed yet meaningless are common in natural lan-
guages as well. Everyone probably had an experience in high school of a teacher
marking a sentence as not making any sense, despite being grammatically cor-
rect. The sentence probably did make sense to you when you wrote it. ‘Making
sense’ is a tough topic; in a Computing Theory class you will learn that there
is no, and cannot be, a definite procedure (algorithm) to decide if sentences or
programs make sense (except for very simple languages).

What we are left with, it seems, is to try to evaluate a given sentence any-
way — perform its computation. If we encounter a roadblock such as trying to
apply an operation to something outside of its range — e.g., dividing by zero,
applying an integer operation to not-an-integer — report an error and exit. Al-
though this strategy works quite well — after all, rebooting is uncannily effective
in solving many computer problems — there are many situations where it is
detrimental, harmful or even disastrous. An impressive example of the latter is
the first test flight of the Ariane 5 rocket. The guidance computer obtained a
result that did not fit within allocated 16-bits and raised an overflow exception.
The system was rebooted. When the rocket is ascending with engines at full
thrust, it is not a good time for rebooting the guidance system.'*

Therefore, it becomes important to anticipate roadblocks and take counter-
measures before starting the execution. At the beginning of the 20th century,
Bertrand Russell faced a similar problem with some logical formulas which,
although well-formed, were paradoxical. He wanted to find a way to rule out
such a formula by just ‘looking over it’, without getting bogged down in its
possible meaning. In 1903 (with further development in 1908) he introduced
a formalism for so-called “range of significance” of logical predicates and for
deciding, at a glance, when a predicate is applied outside of its range. He called
this “range of significance” type.

It is important to realize that ‘anticipation’ is rarely perfect. An anticipated
rain may not happen, or rain may still fall with a sunny forecast. Types are
designed to eliminate the latter error — continuing our analogy, if no rain is
anticipated, no rain shall fall.

13For a concrete, and rather scary example, see the entry DWIM in The Jargon File http:
//www.catb.org/~esr/jargon/html/D/DWIM.html.
Mhttps:/ /www.bugsnag.com/blog/bug-day-ariane-5-disaster/
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Figure 3: Ariane 501: Ariane 5 first flight. Debris raining down after the
self destruction, 4 June 1996. European Space Agency (ESA) Historic Photo
Archive.

In a well-typed program, particular (explicitly specified) classes of errors
shall not occur, no matter what the input:
“Well-typed programs do no wrong.”

The cost however is conservativity: some programs that make sense (or could
make sense on some inputs) are judged problematic.'®

Types hence play a negative role: rejecting programs that make no sense —
or, to be more precise, rejecting programs that could not be judged meaningful
and safe. One comes across many complaints about a type system restricting
programmer’s flexibility and ‘freedom’. This is like complaining about a fire
alarm being annoying: annoying is what a fire alarm is designed to be.

Types play also a positive role. “Well-typed programs do no wrong” is a
strong positive statement, and hence very valuable. Since we are sure particular
errors shall not occur in our program once it passed the type check, we do not to
have to guard against such errors, and do not have to think about recovery. For
example, the code generator does not have to worry about compiling successor
on booleans: such case is simply impossible. The code generator may also

15Therefore, common type systems may be called ‘pessimistic’: they err on the side of
rejecting programs. If a program can “do wrong” even on a single input, it is judged ill-typed.
There are also ‘optimistic’ type systems, quite less common. Somehow they are limited to
logic programming and Erlang.
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assume that a register that contains a boolean has only two possible pre-defined
bit patterns, and generate optimal instruction sequences accordingly. Types
hence lead to simpler, and more efficient code.

Returning to Ex. 7: the result of an integer Tiger’ program is to be printed
as an integer; a boolean result is to be printed as “true” or “false”. It helps
performance if the choice which function to call at the end of the program —
print_int or print_bool — were done at compile-time. Types help make this
choice. Using types to guide the selection of instructions in a compiler is the
reason types were first introduced in programming languages: see [ .

To emphasize, types are used at compile time, to guide code generation and
reject programs deemed unsafe or meaningless. They are not represented at
run-time.'® Unsafe may mean liable to raise a run-time exception — or interfer-
ing with another program or misusing data. This broadly-speaking “security”
point of view is expressed in the slogan of types as a “syntactical discipline
for enforcing level of abstraction” [ ] (see [ | for the
development of this point of view, mainly due to J.H.Morris).

It took quite a while to realize that classification of values to select instruc-
tions, and the rejection of meaningless/unsafe programs are two aspects of the
same notion: types. It is quite surprising therefore that there was a person who
recognized these connections, back in late 1940s: logician H.B. Curry. The first
technical use of “type” in programming, in 1949, was also due to him
[ ]. Deeply unfortunately, his papers seem to have been forgotten. It is not
until nine years later, in 1958, that the term ‘type’ as classes of values started
to be used [ ]. The connection to logic had to wait another decade
to be rediscovered.

Types are similar to grammar: both give a procedure to judge and accept
a sentence, or reject it as being ill-formed (or ill-typed). Crucially, in both
cases the procedure is ‘superficial’: the judgement is done only by looking at
the shape or form of sentences without deeply considering their meaning. In
principle, type judgments may be incorporated into a grammar. It is rarely a
good idea, because the resulting grammar becomes very difficult to understand,
and also to slow to parse.!” '® Just like separating lexing from parsing, it makes
sense to perform type checking as a separate step.

4.2.7 Compiling integer and boolean unary expressions

All the code for this section is in the directory step22 in the class repo.

Overall, compilation now looks as in Fig. 4. We have added the compiler
phase: which is another interpreter for Lang, performing type-checking, and
then passing the parsed expression to the code generator.

16Formally, this is called “type erasure”.

17Programming language grammars are usually context-free or mostly context-free. Type
systems, however, are often context-sensitive.

18For example, one may compare for equality two integer or two boolean expressions, but
not an integer with a boolean. Expressing this constraint in a grammar leads to the explosion
of non-terminals.
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Lezer (tokenizer)

1 11

-', 'succ’, 'x
Parser
neg (succvy/ eg (succ varx)
Pretty-Printer Compiler (typechecker)
neg (sucw)/ neg (succ varx)
Typechecker Code Generator

movq rdi rax @ incq rax @ negq rax

Asm

assembly file

Build

executable

Figure 4: Data flow after adding type checker

Type checking can be performed as a sort of evaluation: Abstract Inter-
pretation [ ]. The type checker (‘compiler’ in Fig. 4) is
hence written as an interpreter, of Lang. Actually, the compiler of Fig. 4 is a
product'? of two interpreters: the type-checking interpreter and code-generation
interpreter, or the higher-level assembly (what used to be called ‘compiler’ in
Fig. 1.) They interpret the same expression in ‘parallel’ so to speak (or, in
lockstep). The compiler code compiler.ml shows the two roles of types clearly:
the type checking interpreter checks that operations receive the arguments in
their ‘range of significance’. The result, the type of the whole program, is used
at the end, in observe, to select the function to print the result: either print_int
or print_bool.

19that is, a pair
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compiler.ml

Projects

. Take a signature like Lang (actually, the compiled lang.cmi file) and au-
tomatically build a parser for that language. The signature needs to be
annotated with the names of terminals. This is what yacc grammar es-
sentially does. One needs to draw the distinction between concrete and
abstract syntaxes. See §4.2.1.

. Change asm.ml to output the assembly code in Intel format

. Currently we represent a boolean value as a 64-bit word: 0 meaning false
and 1 meaning true. GCC on x86-64 uses a slightly different representa-
tion: still a 64-bit word, but only the least significant 8 bits are taken into
account. Do you see the advantage of it? Change the compiler to use this
representation. All earlier tests should pass. As an extra challenge, think
of (micro- and medium-size) benchmarks to test how much of a difference
this new representation makes.

. Much better memory allocation. One particular direction: notice the
similarity between unique variable renaming (Ex. 15,16) and allocating
memory for those variables.

. A better representation for strings, such as Phil Bagwell’s persistent data
structures. See §4.8.

. Functions returning multiple arguments
. Implement the lambda-lifting technique. See §4.11.3.

. Implement various micro-optimizations. First, when loading an immediate
value into a register, say, rax, and that value happens to be zero, instead of
movq $0,%rax emit xorq %rax,%rax, which is far more efficient. Intel CPU
recognizes such instruction already during decoding (it is not even need
to be executed, strictly speaking). Second, multiplication by constants is
often done without imul instruction: see, for example, how GCC compiles
x * (=7). Division by a constant is always done without using the divi-
sion instruction, which is slow and quite awkward to use. Implement such
optimizations. As a further challenge, discover other micro-optimizations
(e.g., by analyzing GCC assembly output or search the Web) and im-
plement them. Ideally you will come up with a framework which makes
implementing (and adding) micro-optimizations easy.
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