
Towards the best collection API

A design of the overall optimal collection

traversal interface

An argument against iterator

How to turn any enumerator inside out, into

a stream

http://pobox.com/~oleg/ftp/

papers/LL3-collections-enumerators.txt

1



Terminology

Collection – a hash table; a file; a resultset;

a generating function

Enumerator – a higher-order traversal func-

tion that applies a handler to each element

Synonyms: iterator (OCaml), for-each,

fold

Cursor – an accessor of the current element,

and, potentially, of the next one

Synonyms: iterator (C++), stream, lazy

list

2



Conclusions

Enumerators should be offered natively in a

collection API.

We can always derive cursors.

A generic procedure to turn any enumerator

into a cursor, in a language with or without

call/cc.

A procedure to turn an enumerator into a gen-

erator.

Cursors are useful and sometimes indispensable

– but not that often. Why to use enumerators

most of the time.

3



Enumerators vs. cursors (1/3)

Ease and safety of programming

• Enumerators are far easier to write: e.g.,

traversing a tree without parent pointers

• The current element of a cursor is an im-

plicit state: cf. global variables

• Enumerators perfectly hide the traversal

state

• Enumerators need no exceptions or out-

of-band values to indicate the end of the

traversal

4



Enumerators vs. cursors (2/3)

Efficiency

• A cursor must check for the validity of its

state on each operation:

fgetc() N times vs. fread() on the buffer

of size N,

nil checking in head/tail functions

• “The performance of cursors is horrible in almost all

systems. One of us once had an experience of re-

writing an eight-hour query having nested cursors

into a cursor-free query that took 15 seconds.” D.

E. Shasha and P. Bonnet. DDJ, July 2002, pp.

46-54.

• Enumerators lend themselves to multi-

stage programming.

Inlining of iterations: Blitz++

5



Enumerators vs. cursors (3/3)

Predictable resource usage and avoidance of

resource leaks

(define (enum proc collection)
(let ((database-connection #f))

(dynamic-wind
(lambda ()

(set! database-connection
(open-connection collection)))

(lambda () (iterate proc))
(lambda ()

(set! database-connection
(close-connection database-connection))))))

No such simple bracketing for a cursor passed

from one procedure to another.

In general, a cursor requires a manual resource

management, or finalization.

6



Enumerators and Generators

Generator: an expression that can produce sev-

eral values, on demand [Icon].

Generators share some advantages of enumer-

ators and some drawbacks of cursors:

• Easy to write

• Good encapsulation of the traversal state

• Demand-driven: leak resources when the

iteration is logically finished

Generators are trivial in Scheme: the first hint

that enumerators and cursors are related via

first-class continuations.

7



Multiple-valued expressions and shift/reset

Icon

sentence := "Store it in the neighboring harbor"

if (i := find("or", sentence)) > 5 then write(i)

Scheme

(define (fail) (shift c "no")) ; abort

(reset

(let ((i (find "or"

"Store it in the neighboring harbor")))

(if (not (> i 5)) (fail)

(begin (display i) (newline)))))

Olivier Danvy and Andrzej Filinski: Abstracting Con-

trol. Proc. 1990 ACM Conf. on LISP and Functional

Programming.

8



Generators in Python and Scheme

Python

>>>> # A recursive generator that generates Tree leaves in in-order.
>>> def inorder(t):
... if t:
... for x in inorder(t.left):
... yield x
... yield t.label
... for x in inorder(t.right):
... yield x

Scheme

; tree:: ’() | (list label tree-left tree-right)
(define (inorder tree)

(lambda (suspend)
(if (pair? tree)

(apply
(lambda (label left right)

(ffor-each suspend (generative (inorder left)))
(suspend label)
(ffor-each suspend (generative (inorder right))))

tree))))

suspend is an ordinary procedure

Complete code:

http://pobox.com/~oleg/ftp/Scheme/enumerators-callcc.html

9



Proposed traversal interface

The following interface ought to be provided

natively by a collection API:

A left-fold enumerator with explicit multiple

state variables and a premature termination.

In a language with call/cc:

coll-fold-left COLL PROC SEED ... -> [SEED ... ]

PROC VAL SEED ... -> [INDIC SEED ...]

In a language without call/cc:

coll-fold-left-non-rec COLL SELF PROC SEED ...

-> [SEED ... ]

10



Cursors are not banished and still available

enumerator ←→ stream

We can always do stream → enumerator

The converse is true! For any collection, for

any enumerator, we can invert an enumerator

inside out and get a stream.

We conclude:

• Enumerators and streams are inter-

convertible

• Native enumerators are a better API choice

than native cursors

11



How to invert an enumerator

(define (lfold->lazy-list lfold collection)
(delay

(call-with-current-continuation
(lambda (k-main)

(lfold collection
(lambda (val seed)

(values
(call-with-current-continuation

(lambda (k-reenter)
(k-main

(cons val
(delay

(call-with-current-continuation
(lambda (k-new-main)

(set! k-main k-new-main)
(k-reenter #t))))))))

seed))
’()) ; Initial seed

(k-main ’())))))

From any left fold enumerator for any collec-

tion – into a stream

12



Inversion in a language with no call/cc (1/2)

The primitive construct is a non-recursive enu-

merator CFoldLeft’

-- recursive enumerator
type CFoldLeft coll val m seed =

coll -> CollEnumerator val m seed
type CollEnumerator val m seed =

Iteratee val seed
-> seed -- the initial seed
-> m seed

type Iteratee val seed = seed -> val -> Either seed seed

-- non-recursive enumerator
type CFoldLeft’ val m seed =

Self (Iteratee val seed) m seed
-> CollEnumerator val m seed

type Self iter m seed = iter -> seed -> m seed
type CFoldLeft1Maker coll val m seed =

coll -> m (CFoldLeft’ val m seed)

CFoldLeft1Maker should be offered natively by

a collection API

13



Inversion in a language with no call/cc (2/2)

CollEnumerator is a fixpoint of CFoldLeft’

hfold nonrec to rec:: (Monad m) =>
coll -> (CFoldLeft1Maker coll val m seed)

-> m (CollEnumerator val m seed)
hfold nonrec to rec coll hfold1 maker = do

hfold left’ <- hfold1 maker coll
return $ fix hfold left’

fix f = f g where g = f g

A stream is a continuation of CFoldLeft’

data MyStream m a = MyNil (Maybe a) |
MyCons a (m (MyStream m a))

hfold nonrec to stream::
(Monad m) => CFoldLeft’ val m (MyStream m val)

-> m (MyStream m val)
hfold nonrec to stream hfold left’ = do

let k fn (MyNil Nothing) = return $ MyNil Nothing
k fn (MyNil (Just c))

= return $ MyCons c
(hfold left’ k fn (MyNil Nothing))

hfold left’ k (\ c -> Right $ MyNil $ Just c)
(MyNil Nothing)

Note the polymorphic types!

14



In Practice

The enumerator coll-fold-left has been im-

plemented, tested, and used:

• A relational database interface for Scheme,

used in the production environment

• A Scheme TIFF image library

• Basic Linear Algebra and Optimization

classlib (C++). Enumerator views of ma-

trices added in Jan 1998.

• Under consideration for an Oracle RDBMS

binding in Haskell

15


