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Stream processing defines a pipeline of operators that transform, combine, or
reduce (even to a single scalar) large amounts of data. Characteristically, data is
accessed strictly linearly rather than randomly and repeatedly—and processed
uniformly. The upside of the limited expressiveness is the opportunity to process
large amount of data efficiently, in constant and small space.

Stream processing underlies one of the first programming languages (COBOL),
and it has been coming to forefront again, with the popularity of big data and
MapReduce. The widespread automated trading is one example of extremely
high-performant stream processing; software-defined radio is another such ex-
ample. Widely-used stream libraries are now available for virtually all modern
OO and functional languages, from Java to C# to Scala to OCaml to Haskell,
for small and big data. Streams also motivate a vast range of topics in computer
science such as dependent types, termination and partial evaluation. Streams
stress virtual machines and CPU memory access paths, and pose challenges for
compiler writers and hardware designers.

Functional stream libraries let us easily build stream processing pipelines, by
composing sequences of simple transformers such as map or filter with producers
(backed by an array, a file, or a generating function) and consumers (reducers).
The purely applicative approach of building a complex pipeline from simple
immutable pieces simplifies programming and reasoning: the assembled pipeline
is an executable specification. To be practical, however, a library has to be
efficient: at the very least, it should avoid creating intermediate structures –
especially structures like files and lists whose size grows with the length of the
stream. Even the bounded-size intermediate structures significantly, up to two
orders of magnitude, slow down the processing. Eliminating the intermediate
structures is the central problem in stream processing: so-called stream fusion.

Stream fusion has been the subject of intensive research since late 1950’s.
By now, the low-hanging fruit in stream processing has been all picked up –
although some of it though quite recently, POPL 2017. Stream fusion made
it to the front page of CACM1. Java 8 Streams and Haskell compilers, among
others, have implemented some of the earlier research results. We have attained

1https://cacm.acm.org/magazines/2017/5/216312-exploiting-vector-instructions-

with-generalized-stream-fusion/fulltext
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a milestone. What are the further challenges?
We thus propose a discussion-heavy workshop to assess the state of the art

and to answer:

1. Can the recent advances in ‘traditional’ stream fusion be extended to non-
traditional domains such as GPGPU, heterogenous architectures (FPGA)?
Can the methods of stream fusion be applied to functional reactive pro-
gramming (FRP) and optimizing database queries?

2. Can we bridge functional and effectful stream libraries?

3. What are the next big challenges? Which real world scenarios require new
advances in stream fusion?

Just as the two Shonan meetings (No.2012-4 “Bridging the Theory of Staged
Programming Languages and the Practice of High-Performance Computing”
and No. 2014-7 “Staging and High-Performance Computing: Theory and Prac-
tice”) aimed to solicit and discuss real-world applications of assured code gen-
eration in HPC (High-Performance Computing) that would drive programming
language research, we likewise aim to compile the case studies requiring further
research in stream fusion, and distill them into a benchmark.

To promote mutual understanding, we plan for the workshop to have lots
of time for discussion. We will emphasize tutorial, brainstorming and working-
group sessions rather than mere conference-like presentations.
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Main Questions

The following points and questions were raised repeatedly during the seminar.
Push and pull duality appears in many guises in stream processing research
and also in database community, as it became clear during the meeting. By
now researchers know the differences and what challenges each design faces
and designers can choose from a combination of techniques combining different
properties. For example Strymonas applied the pull approach with elements
taken from push-based composition. Ben Lippmeier, deals with the problem
that short-cut stream fusion cannot fuse a producer into multiple consumers.
It was argued that fusion order is significant and both pull and push must co-
exist. Similarly pull semantics appeared in John Reppy’s Second-Order Array
Combinators (SOAC) where the combinators use a pull thunk parameterised
by the array indices, to get their inputs. The Ziria stream design follows a
pull-based philosophy at the core of its design.

Another question was: how do the different technologies implement stream
error handling? Peter Braam raised this question and in his presentation the
reasons why this is important were made explicit. A full imaging pipeline im-
plemented in Cloud Haskell means that errors can bring down whole nodes.
What is the re-execution protocol in this situation? It was argued that stream
error handling or clocked networks probably enable this easily. From his point
of view, an iteratees/pipes-based DSL seemed the right direction (reinvented as
he said).

Furthermore, streams are not control aware in general: Ziria solved this. In
that language two combinators were first-class. A take and an emit. Strymonas
also raises the need to treat take in a special way. Again, in Ziria the con-
sumer/producer model has appeared. Hardware appears to implement simple
consumers and producers.

Throughout the whole meeting sparsity of data was mentioned by Peter
Braam, Trevor McDonell, John Reppy. Sparsity of data appears on many tensor
libraries but not in mainstream programming frameworks for stream processing.
It needs special handling specially when mapping computations on GPU cores.

Tangible Outcomes

The following challenges where described as a possible set of problems that we
can use to assess the expressivity of different designs.

filterMax. This function is the core of the QuickHull algorithm. The latter
takes a line and an array of points, and finds the farthest point above the line.
filterMax demonstrates that you cannot perform fusion without some sort of
tupling transformation [1].

filterMax: Vector Int -> (Vector Int, Int)

filterMax: xs0

= let xs1 = map (+1) xs0

xs2 = filter (>0) xs1

m = fold max 0 xs2

in (xs2, m)
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Listing 1: filterMax

Sorted Merge. This demonstrates a potential limitation for Synchronous
Dataflow Programming languages like Lustre. The question arisen concerns the
base clock of the computation. This operation is the corner stone of databases
and it would be interesting to answer questions like this.

merge [1, 4, 8, 10] [2, 4, 6, 11] = [1, 2, 4, 4, 6, 8, 10, 11]

Listing 2: Sorted Merge

Multiple Appends. Another issue that demonstrates the need for modular
and multiple scheduling strategies is outlined by the multiple appends problem
(Figure 1).

Figure 1: Multiple appends
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Parallel Merge. Figure 2 shows two cases of a parallel merge. On the left
fusing this with Machine Fusion results in a process where the number of states
is exponential in the number of merges. On the right, merge is a sorted merge,
takes two sorted streams and it interleaves the elements so that the result is
also sorted.

Figure 2: Parallel Merge
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Meeting Schedule

October 22 (Monday)

Theme: Introductions, background tutorials

• Self-introductions

• A brief history of streams (Aggelos Biboudis)

• Lucid, Lustre and its descendants (Marc Pouzet)

October 23 (Wednesday)

Theme: Stream fusion, schemes and technologies

• Compiling Ziria to Hardware (Geoffrey Mainland)

• Machine Fusion is not Associative (Ben Lippmeier)

• What if — we considered our streams arrays? (Sven Bodo Scholz)

• Versatile Event Correlation with Algebraic effects (Oliver Bračevac)

• Streaming data compression (Jeremy Gibbons)

• Pull vs. Push-Based Loop Fusion in Query Engines (Amir Shaikhha)

October 24 (Thursday)

Theme: Streams on the big scale, Excursion

• Software for the SKA telescope (Peter Braam)

• Streaming with Nessie (John Reppy)

• Excursion and Main Banquet

October 25 (Friday)

Theme: Streams on the GPU, Conclusions

• Is this even a good idea? (Trevor McDonell)

• Vélus: A formally verified compiler for Lustre (Timothy Bourke)

1 Overview of Talks

A brief history of streams

Aggelos Biboudis, EPFL

Stream. What is a stream? Where is the start and where is the end? By
re-interpreting Heraclitus, all things pass and nothing remains still. Everything
can be viewed as a river’s flow: you cannot step into the same river twice. So
what is a stream? Is it the data itself? What if the data are in–memory? What
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if it is the pipeline itself? Is it the series of combinators or is it an iterator that
you cannot traverse twice? Is an iterator, the only form of traversal? Is the
stream pushed to us by an external force or do we control the stream by letting
the stream flow towards us according to our will? This presentation makes
an attempt to set up the high-level terminology and give an overview of how
streams started to come into existence as a programming language abstraction.

Lucid, Lustre and its descendants

Marc Pouzet, Université Pierre et Marie Curie & École normale supérieure

A tutorial on the origins, motivations, development and the state of the art
of synchronous data-flow languages.

Compiling Ziria to Hardware

Geoffrey Mainland, Drexel University

Ziria offers a programming model based on a monadic language for specifying
and composing stream processors. It enforces clean separation between control
and data flow for the implementation of for implementing protocols for Software
Defined Radios.

Machine Fusion is not Associative

Ben Lippmeier, University of New South Wales

Machine fusion is a new (2017) technique for fusing networks of functional
stream combinators. The combinators themselves are written in a simple imper-
ative language and can both pull-from and push-to input/output streams. The
fusion technique can fuse networks that contain both splits and joins, where
multiple combinators in the network read data from the same input stream.
This is unlike simpler short-cut fusion techniques that depend on inlining, and
thus do not work when an input stream is referred to multiple times. Unfortu-
nately, the primitive operator that fuses two combinators is not associative (or
commutative), which means there are many possible orders in which to attempt
to fuse a network of many combinators. Not all fusion orders are valid, and
we currently don’t have a good way of determining the valid orders ahead of
time. The current implementation uses heuristics and tries many possible fu-
sion orders, but this is unsatisfying and risks combinatorial explosion for large
networks.

What if — we considered our streams arrays?

Sven-Bodo Scholz, Heriot-Watt University

Arrays and streams seem to be fundamentally at odds: arrays require their
size to be known in advance, streams are dynamically growing; arrays offer
direct access to all of their elements, streams provide direct access to the front
elements only; the list goes on. Despite these differences, many computational
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problems at some point require shifting from one paradigm to the other. The
driving forces for such a shift can be manifold. Typically, it is a shift in the task
requirements at hand or it is motivated by efficiency considerations. In this talk,
I provide the key details of our concept of ”Transfinite Arrays” which bridges
the gap between arrays and streams. I try to inspire a discussion on where the
bridging might fail by showing how some of the typical streaming problems can
be expressed in the transfinite array setting.

Versatile Event Correlation with Algebraic effects

Oliver Bracevac, Technical University Darmstadt

In recent work, we contribute an extensible language design for uniformly
expressing variants of n-way joins over asynchronous, push-based event streams
from different domains, e.g., stream-relational algebra, event processing, reactive
and concurrent programming. We model asynchronous reactive programs and
joins on top of algebraic effects and handlers. Join variants can be considered
as cartesian product computations with “degenerate” control flow, such that
unnecessary tuples are not materialized a priori (e.g., one does not need to ma-
terialize all tuples in order to “zip” two streams). Based on this computational
interpretation, we decompose joins into a generic, naive enumeration procedure
of the cartesian product, plus freely composable, variant-specific extensions,
represented in terms of user-defined effect handlers. The latter specialize the
enumeration procedure to obtain a desired materialization behavior.

In this talk, I will give an overview of our language design. Furthermore,
while stream fusion is now well-understood for pull-based stream pipelines, I
would like to have discussions on how to optimize push-based pipelines, espe-
cially in conjunction with coroutine-style programming models, e.g., as enabled
by algebraic effects and handlers.

Streaming data compression

Jeremy Gibbons, University of Oxford

A wide class of problems can be characterized as changes of representation.
I propose to talk about changes of representation for stream processing - trans-
forming a stream of input symbols into a stream of output symbols, and in
particular two data compression techniques, arithmetic coding and asymmetric
numeral systems.

Push versus pull-based loop fusion in query engines

Amir Shaikhha, EPFL

Database query engines use pull-based or push-based approaches to avoid
the materialization of data across query operators. In this talk, we study these
two types of query engines in depth and present the limitations and advantages
of each engine. Similarly, the programming languages community has devel-
oped loop fusion techniques to remove intermediate collections in the context
of collection programming. We draw parallels between databases (DB) and
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programming language (PL) research by demonstrating the connection between
pipelined query engines and loop fusion techniques. Based on this connection,
we propose a new type of pull-based engine, inspired by a loop fusion technique,
which combines the benefits of both approaches. Then, we experimentally eval-
uate the various engines, in the context of query compilation, in a fair envi-
ronment, eliminating the biasing impact of ancillary optimizations that have
traditionally only been used with one of the approaches. We show that for re-
alistic analytical workloads, there is no considerable advantage for either form
of pipelined query engine, as opposed to what recent research suggests.

Software for the SKA telescope

Peter Braam, Consultant

An overview of the SKA telescope, its technical specification and software
requirements.

Streaming with Nessie

John Reppy, University of Chicago

Nessie is a NESL-based compiler for GPUs that supports offloading sparse
operations in a streaming fashion.

Is this even a good idea?

Trevor McDonell, Utrecht University

A tutorial on the principles and design behind Accelerate.

Specifying and Verifying a Lustre Compiler in an Interac-
tive Theorem Prover

Timothy Bourke, INRIA & ENS

Tools like Scade and Simulink allows engineers to develop and validate sys-
tems at the level of abstract “block diagrams” that are automatically compiled
into executable code. Behind these diagrams is a programming model based on
(synchronous) dataflow streams combined with imperative features like hierar-
chical state machines.

We have been working on a verified compiler for Lustre—-the academic coun-
terpart of SCADE-—in the Coq interactive theorem prover. This project in-
volves specifying the high-level stream-based semantics, programming the com-
pilation passes that successively transform Lustre programs into the Clight input
language of the CompCert compiler, and showing that repeatedly executing the
assembly code produced by CompCert recreates the streams associated with the
input program.

This talk will focus on the stream-based semantic models we have developed,
give an overview of the compilation process and the proof of its correctness, and
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outline remaining challenges and open questions for both compiler and program
verification in interactive theorem provers.

The work described is the result of collaborations with Lélio Brun, Pierre-
Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg.
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