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Abstract
Implicit heterogeneous metaprogramming (a.k.a. offshoring) is an
attractive approach for generating C with some correctness guaran-
tees: generate OCaml code, where the correctness guarantees are
easier to establish, and then map that code to C. The key idea is that
simple imperative OCaml code looks like a non-standard notation
for C. Regretfully, it is false, when it comes to mutable variables.
In the past, the approach was salvaged by imposing strong ad hoc
restrictions. The present paper for the first time investigates the
problem systematically and discovers general solutions needing no
restrictions. In the process we explicate the subtleties of modeling
mutable variables by values of reference types and arrive at an
intuitively and formally clear correspondence. We also explain C
assignment without resorting to L-values.

1 Introduction
Generating C (or other such low-level language) is inevitable if
we want the convenience and guarantees of abstractions – and
we want the code that runs in a constrained environment (e.g., a
low-powered robot); involves OpenMP, OpenCL (i.e., GPGPU) or
AVX512 instructions; benefits from profitable but highly domain-
specific optimizations typical in HPC. In fact, we have done all of
the above, using the offshoring technique first proposed in [1] and
re-thought and re-implemented in [2]. The key idea of offshoring,
explained below, is the close correspondence between imperative
OCaml and C code.

Mutable variables of C is the biggest stumbling block: the straight-
forward mapping of OCaml variables of reference types to C mu-
table variables is insidiously wrong, when it comes to aliasing. In
the past, pitfalls were steered around of by imposing strong, ad
hoc restrictions – which made generating C code with mutable
variables of pointer types, for example, out of reach.

We propose a better mapping between reference-type and muta-
ble variables that needs no restrictions and hence widens the scope
of offshoring.

After introducing offshoring, the paper explains the problem
of generating code with mutable variables, and, in §3.2, its cur-
rent, imperfect resolution. §4 and §5 each introduce new proposals,
improving the state of the art. §5’s approach is the most general, in-
tuitive, easier to show correct, and insightful. It applies to any other
language which uses values of reference types to model mutable
variables, such as F# and SML.

2 Offshoring
Offshoring turns homogeneous metaprogramming – generating
OCaml in OCaml – into heterogeneous: generating C. The key
idea is that simple imperative subset of OCaml may be regarded as
a different notation for C. Taking the running example of vector
addition from [2], contrast the OCaml code

let addv = fun n vout v1 v2→
for i=0 to n−1 do

vout.(i)← v1.(i) + v2.(i) done

and the C code:

void addv(int n, int∗ vout, int∗ v1, int∗ v2) {
for(int i=0; i≤n−1; i++)
vout[i] = v1[i] + v2[i];

}

The similarity is so striking that onemay argue that OCaml’s addv is
C’s addv, written in a different but easily relatable way. Offshoring
is the facility that realizes such correspondence between a subset
of OCaml and C (or other low-level language). With offshoring, by
generating OCaml we, in effect, generate C.

WithMetaOCaml, wemay statically ensure the generated OCaml
code compiles without errors. If we can map OCaml to C while
preserving the guarantees, we in effect obtain the assured C code
generator. Needless to say, the mapping ought to preserve the
dynamic semantics/behavior.

It should be stressed that the mapping from OCaml to C in not
total. We are not aiming to translate all of OCaml to C – only a
small imperative subset. That is why we are not concerned with
closures, recursion, user-defined datatypes, let alone more com-
plicated features. Therefore, we generate efficient C that does not
need any special run-time. We are not aiming to generate every C
feature either. After all, like other languages C is redundant: many
differently phrased expressions compile to the same machine code.
The supported subset of OCaml and C, if small, should still be use-
ful – and it proved to be in our experience, for generating HPC and
embedded code.

3 Problem with Mutable Variables
However small themappable OCaml subset may be, its range should
include mutable variables, which are pervasive in C. Offshoring
would hardly be useful otherwise. Thus the central problem is
what should be the OCaml code that maps to C code with mutable
variables. OCaml values of reference types are not a straightforward
match of Cmutable variables – as one realizes upon close inspection.
Hereby we undertake the systematic investigation of the problem.

3.1 Formalization
We introduce the calculus ICaml to delineate the minimal relevant
first-order imperative subset of OCaml. (The subset of OCaml used
in offshoring [2] is not much bigger, adding loops and conditionals.)

Most of it is self-explanatory. Constants 𝑐𝑖 have to be applied to
𝑖 arguments to be considered expressions. We use the customary
infix notation for such applications where appropriate.

The calculus is Church-style: all (sub)expressions are annotated
with their types. To avoid clutter however, we mostly elide types,
where they can be easily understood. The type system is entirely
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Variables 𝑥,𝑦, 𝑧

Base Types 𝑏 ::= int | bool
Types 𝑡 ::= unit | 𝑏 | 𝑡 ref
Constant Types 𝑠 ::= 𝑡 | 𝑡 → 𝑠

Expressions 𝑒 ::= 𝑥 | 𝑐0 | 𝑐1 𝑒 | 𝑐2 𝑒 𝑒 | 𝑒; 𝑒 | let 𝑥 = 𝑒 in 𝑒

Figure 1. Calculus ICaml. For constants 𝑐𝑖 see Fig. 2.

1, 2, 3, . . . : int ref : 𝑡 → 𝑡 ref

𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒 : bool ! : 𝑡 ref → 𝑡

+ : int→ int→ int := : 𝑡 ref → 𝑡 → unit

Figure 2. The constants 𝑐𝑖 of ICaml and their types. Their arity 𝑖
is the number of arrows in their type. For instance, ! is a 1-arity
constant 𝑐1, and := is 𝑐2. Only constants have arrow types. We may
silently add other similar constants.

standard and elided to save space. The dynamic semantics is also
standard.

The calculus CoreC, Fig. 3, models the relevant subset of C: the
target of the offshoring mapping. It is also entirely standard. The
static and dynamic semantics of ICaml and CoreC are shown in
full (in tagless-final style) in the file refcalculi.ml accompanying
the paper (see also http://okmij.org/ftp/tagless-final/refcalculi.ml).

Variables 𝑥,𝑦, 𝑧

Base Types 𝑏 ::= int | bool
Types 𝑡 ::= unit | 𝑏
Constant Types 𝑠 ::= 𝑡 | 𝑡 → 𝑠

Expressions 𝑒 ::= 𝑥 | 𝑐0 | 𝑐1 𝑒 | 𝑐2 𝑒 𝑒 | 𝑒; 𝑒
𝑡 𝑥 = 𝑒; 𝑒 | 𝑥 := 𝑒

Figure 3. Calculus CoreC. Its constants 𝑐0 and the 2-arity constant
+ are the same as those in Fig. 2.

The calculus permits expressions like (int𝑥 = 1 + 2;𝑥 + 3) + 4,
which is invalid C. However, with the simple post-processing step
of lifting variable declarations (always possible if the names are
unique, which is assumed), it becomes int x; (x=1+2,x+3)+4, which
is proper C.

The calculi ICaml and CoreC are quite alike; the main difference
is in mutation. To emphasize the distinction, we show the (natu-
ral deduction) typing derivation of integer assignment in the two
calculi.
𝑥 : int ref 𝑒 : int := : int ref → int→ unit

𝑥 := 𝑒 : unit

𝑥 : int 𝑒 : int

𝑥 := 𝑒 : unit
We see in particular that whereas 𝑥 := 𝑥 in ICaml cannot be typed,
this expression is well-typed and meaningful (as a no-op) in CoreC.
Assignment in CoreC is a special form; therefore, the same 𝑥 on dif-
ferent sides may have different meanings – traditionally described
by the terms L-value and R-value.

The calculi ICaml and CoreC resemble the corresponding calculi
in [1], but are much, much simpler – and free from the severe
restriction on initializers being constants.

⌈𝑥 : 𝑡⌉ = 𝑥 : ⌈𝑡⌉
⌈!(𝑥 : 𝑡)⌉ = 𝑥 : ⌈𝑡⌉
⌈(𝑥 : 𝑡) := 𝑒⌉ = 𝑥 : ⌈𝑡⌉ := ⌈𝑒⌉

⌈let 𝑥 : 𝑡 = ref 𝑒 in 𝑒′⌉ = ⌈𝑡⌉ 𝑥 = ⌈𝑒⌉; ⌈𝑒′⌉
⌈let 𝑥 : 𝑡 = 𝑒 in 𝑒′⌉ = ⌈𝑡⌉ 𝑥 = ⌈𝑒⌉; ⌈𝑒′⌉

Figure 4. Naive offshoring translation

3.2 Extant Offshoring Translation
We now state the translation ⌈·⌉ from a (type-annotated) expression
of ICaml to a type-annotated expression of CoreC, Fig. 4, with the
rest being homomorphism. Here ⌈𝑡 ref⌉ = 𝑡 and ⌈𝑡⌉ = 𝑡 otherwise.
This is basically the translation proposed in [1], adjusted for (many)
differences in notation. As an example, the ICaml expression

let 𝑥 = ref 0 in 𝑥 := !𝑥 + 1
is translated to

int𝑥 = 0;𝑥 := 𝑥 + 1
The translation clearly expresses the idea that an OCaml value of

a reference type bound to a variable is a model of mutable variables
in C. It is also clear that the translation is partial: ICaml code like
!(ref 0) or (ref 0) := 1 is not translatable. The translation is also
non-compositional: variable references are translated differently if
they appear as the first argument of ! or the assignment operation.
If we add constants with arguments of reference types, like incr,
the translation has to be amended.

There is also a subtle and serious problem with the translation
as written. Applying it to

let 𝑥 = ref 0 in let 𝑦 = 𝑥 in 𝑦 := 41; !𝑥 + 1 (1)

would give
int𝑥 = 0; int𝑦 = 𝑥 ;𝑦 := 41;𝑥 + 1

which has a different meaning. Whereas the ICaml expression eval-
uates to 42, its CoreC translation returns 1.

The root of the problem is the difference in meaning between
let 𝑦 = 𝑥 in . . . in ICaml and 𝑡 𝑦 = 𝑥 ; in CoreC. In the latter case,
a new mutable variable is allocated whose initial contents is the
current value of 𝑥 . Then 𝑦 and 𝑥 are mutated independently. On the
other hand, let 𝑦 = 𝑥 in . . . allocates no new reference cell; it mere
introduces a new name, 𝑦, for the existing reference cell named 𝑥 .
One may informally say that in ICaml, names of mutable cells are
first-class.

Although the interpretation of names in ICaml and CoreC differs,
as we have just seen, the difference fades in restricted contexts.
The offshoring translation can be made meaning-preserving, after
all – if we impose restrictions that preclude aliasing. The paper
[1] never mentions that fact explicitly. However, if we carefully
examine the typing rules in its Appendix A2, we discover the silently
imposed restrictions: only base-type references, and only base-type
let-bindings (sans the dedicated expression let 𝑥 = ref 𝑒 in 𝑒′ for
creating references). The fixed offshoring translation is shown in
Fig. 5.

This is the (core of the) offshoring translation used in the current
MetaOCaml: BER N111. It has been used in all offshoring applica-
tions so far, many of which are mentioned in [2], which also details
simpler use cases.
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⌈𝑥 : 𝑏⌉ = 𝑥 : 𝑏
⌈!(𝑥 : 𝑏 ref)⌉ = 𝑥 : 𝑏
⌈(𝑥 : 𝑏 ref) := 𝑒⌉ = 𝑥 : 𝑏 := ⌈𝑒⌉

⌈let 𝑥 : 𝑏 ref = ref 𝑒 in 𝑒′⌉ = 𝑏 𝑥 = ⌈𝑒⌉; ⌈𝑒′⌉
⌈let 𝑥 : 𝑏 = 𝑒 in 𝑒′⌉ = 𝑏 𝑥 = ⌈𝑒⌉; ⌈𝑒′⌉

Figure 5. The extant offshoring translation, with clearly stated
restrictions

Although the translation proved more or less adequate for nu-
meric code, it is clearly severely restrictive: it is impossible, for
example, to generate C code with pointer-type function arguments
or pointer-type mutable variables – or even represent pointer types
to start with. Occasionally we had to fiddle with a generator to
make it produce the offshorable OCaml code. Also, the translation
of the problematic (1) is not fixed: merely outlawed.

Each of the two following sections propose a new translation,
overcoming the drawbacks of the state of the art.

4 C without Mutable Variables?
Paper [2] briefly mentions, merely on two examples and without
details or formalization, an alternative translation: avoiding muta-
ble variables altogether. In terms of the present paper, the calculus
CoreC becomes unnecessary: ICaml as is gets mapped to the surface
syntax of C. We now present the translation formally and systemat-
ically, noting its advantages and disadvantages. The disadvantages
motivate the proposal in §5.

The key idea is that C already has the analogue of ICaml values
of reference type: arrays. Expressions of reference types of ICaml
are C pointer expressions. Assuming the lifting transformation
mentioned in §3.1, the mapping ⌊·⌋ from ICaml to C is as follows:

⌊ref (𝑒 : 𝑡)⌋ = t z[1] = {⌊𝑒⌋}; z (z is fresh)
⌊!𝑒⌋ = ∗⌊𝑒⌋
⌊𝑒 := 𝑒′⌋ = ∗⌊𝑒⌋ := ⌊𝑒′⌋

⌊let 𝑥 : 𝑡 ref = 𝑒 in 𝑒′⌋ = t ∗ const x = ⌊𝑒⌋; ⌊𝑒′⌋
⌊let 𝑥 : 𝑏 = 𝑒 in 𝑒′⌋ = b x = ⌊𝑒⌋; ⌊𝑒′⌋

One is reminded of Algol68, in which .int x := 1 is the abbreviation
for .ref.int x = .local.int := 1, where .local.int is the stack allocator
of an integer (similar to alloca in C).

The earlier example

let 𝑥 = ref 0 in 𝑥 := !𝑥 + 1
now looks like

int * const x = (int z[1]=0; z); *x = *x + 1;

or, after variable lifting

int z[1] = 0; int * const x = z; *x = *x + 1;

The problematic (1), that is,

let 𝑥 = ref 0 in let 𝑦 = 𝑥 in 𝑦 := 41; !𝑥 + 1
becomes

int z[1] = 0; int * const x = z;
int * const y = x; *y = 41; *x + 1

and returns the same result as the ICaml code.
There are no longer any restrictions to base types; adding con-

stants like incr is easy. Arrays, conditionals, loops are straightfor-
ward as well.

Other extensions are more problematic, however. If we extend
ICaml with composite data structures (e.g., to express linked lists),
functions returning values of reference types, or global variables
or arguments of higher-reference types – we have to worry about
the lifetime of reference cells allocated by ref 𝑒 . (These extensions
are not common in numeric computing however.) They have to
be allocated on heap, and managed somehow (e.g., via reference
counting). We have to stress, however, that resource/memory man-
agement is the problem that has to be dealt with at higher levels
of abstractions; by the time of offshoring, the code should already
be assured resource-safe. See [3] for an example of such resource-
safety assurances.

The translation results in highly unidiomatic C code, which, from
personal experience, provokes negative reaction and strong doubts
about correctness. A reviewer suggested a slight adjustment, which
makes the result look a bit more familiar.

⌊ref (𝑒 : 𝑡)⌋ = alloca(⌊𝑒⌋)

where alloca could be avoided by allocating a fresh variable in
scope. Thus the running example

let 𝑥 = ref 0 in 𝑥 := !𝑥 + 1

becomes

int z = 0; int * const x = &z; *x = *x + 1;

which looks a bit more like conventional C.
One of the advantages of the present translation is that

⌊𝑡 ref⌋ = ⌊𝑡⌋ ∗ const

That is, reference types of ICaml map directly to pointer types
in C. On the downside, we do not represent mutable variables of
C or CoreC directly in ICaml. The disadvantage has a practical
side: as seen from the translation examples, each reference-type
variable of ICaml is translated to two variables in C: one holds the
content and is mutated, and the other is the pointer to the former.
The C code hence needs twice as many variables – and twice as
much stack storage for them. In simple code, a C compiler can notice
variables that are not mutated and effectively inline them, removing
the need to store them. However, we are aiming to generate very
complicated code. Take, for example matrix-matrix multiplication
from our past work: applying standard techniques to make it fast
results in thousands of lines of C code. There, C compiler may not
see that some variables are redundant.

Can mutable variables in (Core)C be represented directly in
ICaml? Can the translation hence map those ICaml variables di-
rectly, one-to-one, to CoreC mutable variables, without allocating
pointers to them? Can we intuitively and formally be confident in
the translation, even for arbitrarily complex reference types? The
following section shows the answer.

5 Mutable Variables and Reference Types
We have just seen the translation from ICaml to C that maps ICaml
variables of reference types to constant-pointer–type variables of C.
We now present the translation that relates reference type variables
of ICaml and mutable variables of C. It requires no restrictions,
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Variables 𝑥,𝑦, 𝑧

Base Types 𝑏 ::= int | bool
Types 𝑡 ::= unit | 𝑏 | 𝑡 ptr
Binder Types 𝑢 ::= 𝑡 | 𝑡 const
Constant Types 𝑠 ::= 𝑡 | 𝑡 → 𝑠

Expressions 𝑒 ::= 𝑥 | 𝑐0 | 𝑐1 𝑒 | 𝑐2 𝑒 𝑒 | 𝑒; 𝑒
𝑢 𝑥 = 𝑒; 𝑒 | &𝑥

Additional Constants

∗ : 𝑡 ptr→ 𝑡 ← : 𝑡 ptr→ 𝑡 → unit

Figure 6. Calculus CoreCE. Constants 𝑐0 and + are same as those
in Fig. 2.

produces idiomatic C code, and gives insight into the nature of
mutable variables.

An easy way to obtain a translation with mutable variables in
its range is to start with the straightforward inverse mapping from
CoreC to ICaml. Unfortunately, it is very much not surjective (and
if we extend CoreC with pointer types, it becomes non-injective).
Therefore, inverting it is problematic. Still the CoreC to ICaml map-
ping gives a hint. Other hints come from looking at the denotational
semantics (tagless-final interpreters) of ICaml and CoreC: the file
refcalculi.ml in the accompanying code mentioned earlier. We no-
tice that let 𝑥 = ref 𝑒 in 𝑒′ has exactly the same denotation (as the
function of the denotations of 𝑒 and 𝑒′) as 𝑡 𝑥 = 𝑒; 𝑒′ in CoreC.
Therefore, if the mutable variable 𝑥 introduced by 𝑡 𝑥 = 𝑒; 𝑒′ is
not actually mutated in 𝑒′, it has the meaning of the let-binding in
ICaml.

To formulate the new translation, we extend CoreC with pointer
types and corresponding operations, obtaining the calculus CoreCE.
Assignment is no longer a special expression form: it is a function
application. Its both arguments are ordinary function application
arguments, with no need to introduce L-values. Other pointer-
taking functions like incr can be added at will. We also add constant
(binder) types, to indicate that some variables are immutable. In
surface C, 𝑒 ← 𝑒′ is to be rendered as ∗e = e' – which is a key to
understanding C assignment without resorting to L-values. Also,
in surface C we abbreviate ∗&x to just x. (We may also leave ∗&x as
is: it is valid.) The type system and dynamic semantics are fairly
standard: see refcalculi.ml.

The offshoring translation ⌈·⌉𝐿 is parameterized by the set 𝐿 of
mutable variables in scope:

⌈𝑥 : 𝑡⌉𝐿 = 𝑥 : ⌈𝑡⌉ 𝑥 ∉ 𝐿

⌈𝑥 : 𝑡⌉𝐿 = &𝑥 : ⌈𝑡⌉ 𝑥 ∈ 𝐿
⌈!⌉ = ∗
⌈:=⌉ = ←

⌈let 𝑥 : 𝑡 ref = ref 𝑒 in 𝑒′⌉𝐿 = ⌈𝑡⌉ 𝑥 = ⌈𝑒⌉𝐿 ; ⌈𝑒′⌉𝐿∪{𝑥 }
⌈let 𝑥 : 𝑡 = 𝑒 in 𝑒′⌉𝐿 = ⌈𝑡⌉ const 𝑥 = ⌈𝑒⌉𝐿 ; ⌈𝑒′⌉𝐿

where the translation of types is ⌈𝑏⌉ = 𝑏 and ⌈𝑡 ref⌉ = ⌈𝑡⌉ ptr. The
constant ref outside a let-binding can be translated as alloca or
malloc. Compared to the extant translation, Fig. 5, there are no
longer any restrictions on types. Adding constants like incr is easy.

The running example

let 𝑥 = ref 0 in 𝑥 := !𝑥 + 1

now looks like
int𝑥 = 0; &𝑥 ← ∗&𝑥 + 1

or, after rendering in C:

int x = 0; x = x + 1;

The (extended) problematic example

let 𝑥 = ref 0 in let 𝑦 = 𝑥 in 𝑦 := 41;𝑥 := !𝑥 + 1
translates to CoreCE as

int𝑥 = 0; int ptr const𝑦 = &𝑥 ; 𝑦 ← 41; &𝑥 ← ∗&𝑥 + 1
The new translation indeed gives idiomatic C code, which is

easier to inspect and build confidence. Unlike the translation of
§4, only one CoreCE variable is allocated per ICaml variable, with
no extra pointer variables. The extended calculus CoreCE, and
the current translation, which tracks mutability, stress the fact
that although all variables in C are mutable by default, some are
actually not mutated. The latter correspond to ICaml variables.
Actually mutable variables of CoreCE correspond to ICaml variables
introduced by the bindings of a particular shape: let 𝑥 : 𝑡 ref =

ref 𝑒 in 𝑒′, which evoke letref of the original ML.
With full details and formality the translation is presented in the

accompanying code refcalculi.ml. As mentioned earlier, the code
also states the denotational semantics [[ · ]]𝐼𝐶𝑎𝑚𝑙 and [[ · ]]𝐶𝑜𝑟𝑒𝐶𝐸 ,
as compositional mappings from ICaml or CoreCE, resp., to the
common metalanguage, which is OCaml. (One could also use Coq
with a State monad.) The translation from ICaml to CoreCE is then
coded as a functor. Since the (tagless-final) embeddings of ICaml
and CoreCE into OCaml are intrinsically typed, the fact that the
translation functor is well-typed in OCaml implies the translation is
type-preserving. The meaning preservation is expressed by the the-
orem that for each ICaml expression 𝑒 , [[ 𝑒 ]]𝐼𝐶𝑎𝑚𝑙 = [[ ⌈𝑒⌉ ]]𝐶𝑜𝑟𝑒𝐶𝐸 .
To show it, we have to check, manually at present, that the theo-
rem holds for each expression form of ICaml, and then appeal to
compositionality of the semantics.

In conclusion, we have learned that C variables are quite subtle:
one may access a mutable variable via its name or a pointer to it;
however, names and pointers are emphatically distinct.

The new offshoring translation, §5, has been implemented in
BER MetaOCaml.
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