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Getting polymorphism and effects such as mutation to ligetber in the same language is a tale
worth telling, under the recurring refrain of copying vsashg. We add new stanzas to the tale, about
the ordeal to generate code with polymorphism and effeat$ b& sure it type-checks. Generating
well-typed—by—construction polymorphic let-expressias impossible in the Hindley-Milner type
system: even the author believed that.

The polymorphic-let generator turns out to exist. We pregederivation and the application for
the lightweight implementation of quotation via a novel amgxpectedly simple source-to-source
transformation to code-generating combinators.

However, generating let-expressions with polymorphiccfions demands more than even the
relaxed value restriction can deliver. We need a new ded¢tgrolymorphism in ML. We conjecture
the weaker restriction and implement it in a practicallgfus code-generation library. Its formal
justification is formulated as the research program.

1 Introduction

This paper revolves around code generation, namely, gamgitgiped, higher-order code for languages
such as OCaml. Specifically we deal with one approach to cedergtion: staging (recalled §2.2),
and the lightweight way of implementing it via code-genmgtcombinators. In our approach, the
generated code is assured to be well-formed and well-tygecbhstruction: attempts to produce ill-
typed fragments are reported when type-checking the gemdtself. In contrast, the post-validation
used, for example, in Template Haskell [23], type-checksdbde only after it has been completely
generated. The errors are thus reported in terms of the @fexderode rather than the generator, breaking
the generator’s abstracti¢hs

However, staging here is the lens through which to look atdilldeproblem of let-generalization.
The unexpected interactions of polymorphism and stagimgybrinto focus the ‘too obvious’ and hence
rarely mentioned assumptions of the value restriction. gesing code that contains polymorphic let-
expressions is a non-contrived, real-life applicatiort tieguires let-generalization of effectful expres-
sions — going beyond what even the relaxed value restricfit@ns. Staging thus motivates further work
on the seemingly closed topic of let-generalization in trespnce of effects.

Although program generation is a vast area, surprisingyetthas been very little research on typed-
assured code generation with polymorphic let. To our kndgde [15] is the first paper that brings
up a staged calculus that has both polymorphism and mutabte ¢t is motivated by the unexpected
interaction of polymorphism and staging that we describ&§2id. There are many systems for typed

1post-validation is hence similar to run-time failure oftifbed code in dynamically-typed languages. However, withn-
time error we can get a stack trace, etc. On the other hand) pd&-validating the (typically large and obfuscated)egated
code, the generator is long gone and its state can no longemeined.
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2 Generating Code with Polymorphic let

code generation (see [195] for the recent overview) yet polymorphic-let expressi@mne not included

in the target language. The only related, albeit quite retyois the work[[3] on typed self-interpreters,
which does include the representation of polymorphic esgioms as code — but lacks any effects. That
work is based on Systemf-which is difficult to use in practice, in part because it ktjpe inference.

In contrast, in our code generation approach all types &eerad.

Contributions First, the paper presents a new translation from the stagdd € with quotations,
unquotations and cross-stage persistence — to quotagenekpressions over code-generating combi-
nators. The translation is remarkably simpler than therotimstaging translations. It also translates
quoted let-expressions to let-expressions, for the finsé tyiving the chance to generate polymorphic
let-expressions, well-typed by construction. Second, resgnt the first library of typed code combi-
nators whose target language includes polymorphic letibgs and effects. The library requires no
first-class polymorphism, no type annotations and, contbimi¢h the unstaging translation, is suitable
for implementing staging by source-to-source translatiocombinators. The library solves the problem
that the author claimed in 2013 to be unsolvable [13].

Although the translation and the library are already pcadiiy useful, their formalization requires
deeper understanding of polymorphism and effects. Thergapposes a research program, which will
have to open the old value-restriction wounds and couldlfifedal them. Thus we end up posing more
guestions — the questions that could not have been askeatbefo

The paper starts with extensive backgroufi.1 recalls let-polymorphism and the ways to restrict
it in the presence of effects. That section describes thgieggsharing dichotomy that reverberates
through the rest of the pape§2.2 introduces staging, using MetaOCaml as an exampleJa@dde-
scribes the unexpected interactions of staging and polyhiem. We then describe i the novel
translation that systematically eliminates quoted exgioes, replacing them with applications of code
combinators. Alas, the translation does not seem work flynparphic let-expression, as showng8.2.

It can be made to workfd explains how. As in the ordinary ML, reference cells and/parphism is a
dangerous mix; our translation hence needs some sort dirigties, weaker than even the relaxed value
restriction.§4.1 discusses the solutions and the many follow-up prohlems

We will be using OCaml throughout the paper for concretenésswever the discussion equally
applies to any other typed, higher-order language withmpolphism and effects.

The complete code accompanying the paper is available at

http://okmij.org/ftp/meta-programming/polylet.ml

2 Background

This background section recalls let-generalization; iitdbfems in the presence of effects; staging; and
the unexpected interaction of generalization and stadiag dalls up the assumptions of the value re-
striction. The section introduces the running examples leger in the paper.

2.1 Let-polymorphism
Since the early days of LISP and ISWIM_|16], let-expressiteisus introduce and name common or
notable expressions which are used, often repetitivetlgry la the code. Here is a simple example:

(1) let x = [1] in
(2::x,3::x)
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It may be regarded as a sort of a ‘macro’ that expands into

(2 (2::[1],3::[1])
In fact, such a ‘macro-expansion’ — copying (inlining) teebound expression into the places marked by
the let-bound variable — is the meaning given to let-expoassin Landin’s ISWIM [16]. The alternative
to this copying, or substitution-based semantics is shatirviews (1) as introducing the expressifh
that is shared across all occurrences.dflence the two lists in (2) share the common tail. Copying vs.
sharing reverberates throughout the paper as the consfeaitr If our program simply prints out (2),
the two semantics are indistinguishable. The equivalestsethe compiler choose inlining or sharing as
fits.

Likewise, the code

(3) let x = [in
(2::x,"3" 2x)

may be viewed as a macro that expands into
(4) (=[] "3 =)
It is tempting to also regard (3) as the sharing of the emptyaliross the two components of the returned
pair. Unlike (2), however]] in (4) has different types: nameiyit list in the first component vstring list
in the second. Thus comes the problem of what type to givestsitiared value and o

The answer developed by Milner [20] was polymorphism: theeaxpression that occurs in — has
been copied into — differently typed contexts may be shanebigiven the common, the most general,
polymorphic type (see also the extended discussion!in [Bile empty list]] has the typex list to be
fully determined by the contexty is the placeholder: a (unique) type variable. In (4), thetexis
determine the type ast list andstring list, respectively. In (3), the context of the right-hand sidel@
of the let-binding has not determined wiaatist should be. In that case, the typegeneralizedo the
polymorphic type schem&ia. o list.

Formally, the typing of let-expressions is representechiey(GenLet) rule below. The rule is written
in terms of the judgmentB F e : t that an expressioa has the type in the type environment (which
lists the free variables @fand their types).

M-e:t Mx:GEN(,t)Fe :t x:Vay...ontel
GenLet Inst

MFletx =eine :t FExit{or=t1...an=tn}
The generalization functio®EN(I,t) for the typet with respect to the type environmentquantifies
the free type variables afthat do not occur as free in

GEN(I',t) =Vay...ant wherg(a; ...an} =FV(t) —FV(IN)

whereFV (-) denotes the set of free variables. When a variable with thermyphic type schema such
asx: V a. o list in (3) is used in an expression, e.d:;x, the schema is converted to a more specific
type,int list in our example: see the rule (Inst). The underlying asswmps that the value named by
indeed has the same representation for all instances obiimprphic type schema and hence may be
shared, even across differently-typed contexts; thentist#on is a purely type-checking-time operation
that behaves like identity at run-time. One may say that thvation of polymorphism is to extend the
equivalence of the copying and sharing semantics to thes ¢eg3).

Side-effects break the equivalence of copying and sharing.

(5) let x = begin printf "bound”; [1] end in
(2::x,3::x)
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If the right-hand side is copied, substituting for the ocences ok in (5), the string’ bound” is printed
twice. If the RHS is first reduced, however, (5) turns to thdiera(1), wherex is bound to the value that
can be either shared or copied. Hence the copying/sharinigadgnce holds even in the case of (5), if
we regard variables as bound to values — as we do in call—lnbe\!anguag& The polymorphic case
should likewise be unproblematic:
(6) let x = begin printf "bound”; [] end in
(2::x,"3" :x)
The polymorphic equality of OCaml can distinguish sharing eaopying:
(7) let x = [1] in
X == X
whereas (7) returns the restitue, the expressiofil] == [1] producedfalse. Another, universal way
to distinguish sharing and copying uses mutable data snegtin particular, mutable cells|[1]. Let's
define
(8) let rset : a list ref - o — a list = funrv —
let vs' = v Irin
r = vs,
vs'
that prepends the valugo the list stored in the reference celbtores the new list in the cell and returns
it. Then
(9) let x = ref [1] in
(rset x 2, rset x 3)
~ ([20 3 1], [3 1])
(rset (ref [1]) 2, rset (ref [1]) 3)
~ (2 1], [3 1))
produce the different results as shown underneath the &sipres. Since the distinction between copying
and sharing is generally visible, there is no longer freeddrrhoosing between the two. OCaml uses
sharing forlet-expressions, performing inlining (copying) only whenaincsee the equivalence.
The example paralleling (3) however does not type-check.
(10) let x = ref [] in

(rset x 2, rset x "3")
(* Does not type—check! x)

As we have just seen, with reference cells, sharing and ngpliffer and the OCaml compiler has to use
the default sharing. Had the expression type-checked,natime rset x "3" would modify the empty
list stored inx by prepending the string3” to it. The expressiomset x 2 will then try to prepend the
integer2 to the contents o%, which by that time is the string ligt 3"]. Clearly that is a program that
has “gone wrong”. We should well remember this example: vadl &le seeing it, in different guises, all
throughout the paper.

Although the RHS of the let-binding in (10) has the typdist ref with the type variable that could
be generalized, it should not be, to prevent (10) from typecking. Intuitively, sharing and copying of
a reference cell have different semantics, hence it shantldget the polymorphic type schema.

The danger of giving reference cells a polymorphic type le&mnlvecognized early on [26]. So has the
problem of how to restrict (GenLet) from applying to “danges” expressions. The most straightforward
solution, used in the early ML and OCaml for a long time, wadirtot reference cells to base types

2Another way to restore the equivalence is to regass bound to an expression that is evaluated only at the pidicés
occurrence. That was the idea of Leroy’s call-by-name polyhism [18].



Oleg Kiselyov 5

only. The restriction made it impossible however to writg/ grolymorphic function that internally
uses reference cells. A good overview of less draconianoappes is given in_[8]. The most widely
implemented, because of its balance of expressivenesshettr simplicity, is the value restrictidn [27]:
applying (GenLet) only to those let-expressions whose Rtymtactically a value. Singef [] in (10)

is not a valuex is not generalized and its occurrences in differently typedtexts will raise the type
error. On the other hangl,in (3) is a value and there does get the polymorphic type. Strictly speaking,
in (6) should not be generalized either. However, it is sstitally obvious that the printing effect has no
contribution to the result of the containing expressione RHS of (6) is what is called ‘non-expansive’.
OCaml generalizes non-expansive expressions, not justsal

Although the value restriction on balance proved expressmough for many ML programs, as
OCaml gained features such as objects, polymorphic variamd a form of first-class polymorphism
(enough to support polymorphic recursion), the restrigtass of the value restriction was felt more and
more acutely. Against this backdrop, Garrigue introdudex‘telaxed value restriction_[8], which we
briefly overview below as we will be relying on it.

The relaxed value restriction explores the close analogyd®n type instantiation and subtyping. It
can also be justified from the point of view of copying-shgrira value occurring in differently-typed
contexts may be let-bound and shared if it can be given thmnoon type’, the supertype of the types
expected by the contexts. The coercion to a subtype, likdyibe instantiation, is a compile-time—
only operation, behaving as identity at run-time. Supposgal@e has the typeero c wherezero is the
empty type, and it can beoercedby subtyping to the type c for anyt. We may as well then give the
variable that is let-bound to the value the type. a c, which can then bénstantiatedto t c. Since
zero is (vacuously) coercible to any type, a value of the type c can be coerced toc only when
the typezero occurs covariantly ireero c. Hence the relaxed value restriction: If the expression
let x = e in e’ has a type with covariant type variables (which do not oceuhée typing context), they
are generalized in the type inferred for(The actual implementation is somewhat more restricthes
[8] for detalils.)

For examplex below is generalized

(11) let x = letr= ref ] in Ir in
(2::x,73" :x)

despite the fact the RHS is an expression — moreover, thessipn whose result comes right from a
reference cell. Still, the result has the typdist whose type variable is covariant (witlist. map being
the witness of it). On the other hand, the type of referentle aeref is non-variant and hencein (10)
remains ungeneralized. The relaxed value restrictioniegpplot only to built-in data types but also to
user-defined and abstract ones:
(12) type +a mylist = List of a list
let mklist : a list — a mylist = fun x — List x
let mycons : 0 — o mylist — o mylist =
fun x — function List | — mklist (x::1)

let x = mklist [] in
(mycons 2 x, mycons "3" x)

Although the RHS of the let-binding is an expressians generalized because the tygemylist is
covariant ina. It is declared to be covariant, by ther<€ovariance annotation. The compiler will check
that the RHS of the type declaration really uses the typebbeir covariantly. The compiler can also
infer the variance, hence the annotations are normallyteditThey are necessary only for abstract
types, whose declaration lacks the RHS.
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Overall, the relaxed value restriction turned up even bétd¢anced, accommodating not just poly-
morphic functions but polymorphic data (including row-polorphic data such as extensible records
and variants), whose construction often involves comjartat The relaxed value restriction was almost
enough for implementing staging via code combinators — btignite, as we see ifd.1. Let us first
review staging.

2.2 Staging

Staging is an approach to writing programs that generatgranos; it may be regarded as a principled
version of Lisp quotation. For example, MetaOCaml lets ustgjany OCaml expression, by enclosing
it within .< and>. brackets:

(1) let c = <1+ 2>,
~» val ¢ : int code = .<1 + 2>.

A quoted expression, representing the generated code, vabhe of the typer code, and can be bound,
passed around, printed — as well as saved to a file and afswampiled or evaluated. For that reason,
the code value such ass called a ‘future-stage’ expression (or, an expressidaval 1), to contrast to

the code that is being evaluated now, at the present, ord@kg.sfen expression that evaluates to a code
value can be spliced-in (or, unquoted, in Lisp terminoloigy® a bigger quotation:

(2) let cb = .<funx — ."c + x>.
~» val cb : (int — int) code = .<funx.1 — (1 + 2) 4+ x_1>.
The spliced-in expression is marked with which is called an escape. The generated code can be
executed by the functiorun (in the moduleRuncode), reminiscent of Lisp’sval:

(3) open Runcode
val run :: a code — a

let cbr = run cb

~> val cbr : int — int = <fun>
cbr 2

~» —:int = b

Runningcb hence compiled theb code of a function into aimt—int function that can be invoked at the
present level. As one expects, running the code indeed @svitle compiler and the dynamic linker. The
run operation hence lets us generate code at run-time and teah-us other words, it offers run-time
code specialization.

When generating functions it is natural to require that thleavior of the resulting program should
not depend on the choice of names for bound variables. Fongea

(4) let c1 = .<funx — ."(let body = .<x>.in .<fun x — ."body>.)>.
~ val cl : (a - B — o) code = .<funx.1l — funx2 — x.1>.

let 2 = .<funy — ."(let body = .<y>.in .<fun x — ."body>.)>.
~ val 2 : (a0 = B — a) code = .<funy3 — fun x4 — y3>.

The expressionsl andc2 should build the code that behaves the same when evalualgslisTindeed
the case, as one can see from the generated code, printechemttie If we write this example with
guotations in Lisp, the expressions are no longer equitalshereasc2 generates the code for the K
combinatorc1 builds a function that takes two arguments returning thers@one. Lisp quotations are
hence not hygienic.

When generating code for a typed language, it is also natonaquire that the produced code is
type-correct by construction. For that reason, the code iyparametrized by the type of the generated
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expression, as we saw foycb, etc. The formal treatment of type soundness is well covargad, (4]
and will be briefly reminded of ig2.3.

MetaOCaml has yet another facility, which has no specidaiasyand is easy to overlook. Let us look
again at.<1 + 2>. and ponder the addition operation there. In the ordinary @I@xpressionl+2,
the addition is the ordinary function, defined in tPervasives module. The addition in<1+2>. refers
to exactly the same function: MetaOCaml permits any valuta®fgenerator to appear in the generated
code. This is called “cross-stage persistence” (CSP) B#ef¢r more discussion). One may think of
CSP identifiers as references to ‘external libraries’.

The trivial code for the addition of two numbers has alreaesndnstrated how wide-spread CSP is.
Let us show a more explicit example of CSP, brought about &yuhction

(5) let lift : o — o code = fun x — .<x>.

The following example then produces the code as shown (canwgigh (2)):
(6) .<funx — “(lift (1 + 2)) + x>.
~»  —: (int — int) code = .<fun x.1 — (* CSP x x) Obj.magic 3 + x_1>.
In contrast to (2), here the addition @f+2) is done at the code generation time; the generated code
includes the computed value. CSP hence lets us do some afttive-stage computations at the present
stage, and hence generate more efficient code. The bi2ajm@agic appearing in the generated code is
the artifact of printing. The following code
(7) .<funx — “(let y = 14 2in .<y>.) 4+ x>.
~» —: (int — int) code = .<fun x2 — 3 + x_2>.
(where the CSP identifigris known to be of thent type) produces the more obvious result.

Our refrain of copying vs. sharing repeats for CSP. When aevabm the present stage is used at a
future stage, do the two stages share the value or does thie fithge get a separate copy? Unfortunately
this issue is not discussed in the literature let alone fdjmmidresseﬁl— which is a pity since it is
responsible for the unexpected soundness problem to beltbebin the next section. The case of a
global (library) identifier seems clear: code such<asicc 3>. contains the identifiesucc that refers to
the same library function it does at the present level. Wdretiiat function is shared or copied between
the present-stage and the generated code depends on tiregistirategy of the compiler and the static
vs. dynamic linking. One could expect sharing/copying tegeivalent in this case.

The cross-stage persistence of a locally-created valueiéch tess cle

(8) let cs =
let z = string_of_float @@ Sys.time () in

.< print_endline z>.
~ val cs : unit code = .<Pervasives. print_endline "0.051" >.

One may imagine that the code valueprint_endline z>. (represented, say, as an AST) contains the
pointer to a string allocated in the running-program headpe-siime pointer that is denoted by the local
variablez. Thenrun cs will print the value of that string on the heap. The presernt te future stage
hence share the string. Rather than runnisignowever, we may save it to a file, as library code for
use in other programs. In this case, when the generated s&daluated the generator program is long
gone, along with its heap. Therefore, when storing a codeevid a file we must serialize all its CSP
values, creating copies. In the upshot, cross-stagedspensiibrary identifiers are always shared; other
CSP values are shared if the code valueuts and copied otherwise. The semantics of CSP is indeed

3the exception being the work [[L5] which was inspired by thebfem we discuss ifZ.3.
4The right-associative infix operat®® of low precedence is applicatioh:@@ x + 1 is the same a6 (x + 1) but avoids
the parentheses. The operator is the analog@erfaskell.



8 Generating Code with Polymorphic let
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Figure 1: Type system of a staged language

intricate. We have just described the CSP implementatidhdrextant MetaOCaml; there is an ongoing
discussion of it and its possible improvemeﬁlts
The guestion of sharing vs. copying CSP becomes non-tiiwhan the CSP value is mutable:
(9) let r = refOin
let cr = .<incrr>.in

run cr; run cr; lr
~ —int = 2

Mutable CSP values naturally arise when run-time speaiglianperative code. They can be used for
cross-stage communication, e.g., counting how many tilnesode is run, as shown in (9) — which
works as intended only with the shared CSP. Sharing of meit@llP values is also responsible for the
unexpected problem with let-polymorphism, detailed next.

2.3 Let-polymorphism and Staging

For a long time let-polymorphism and staging were consifl@r¢hogonal features. It is not until 2009
that their surprising interaction was discov@;eiﬂ has not been formally published. Before describing
this interaction, we first briefly remind the type system ofaged language, on a representative subset
of MetaOCaml.

Staging adds to the base language the expression formsdckdis<e> and escapes e and the
type of code values code. We use the meta-variablefor variables,e for expressionsy for values,
andt for types. The type system is essentially the standard ré&fifult is derived from the type system
of [24] by replacing the sequence of no-longer used classifigth the single number, the stage level.
(Since brackets may nest, there may be an arbitrary numbfetuwre stages.) The judgments have the
form I =" e : t: they are now indexed by the level of the expression; thel isviecremented when
type-checking the expression within brackets and decrtadefior escapes. The identifiers within the
typing environment are now indexed by the level at which they are bound. The (&9nble reflects
the value restriction.

Staging thus contributes the three rules (Bracket), (Ecapd (CSP) and the indexing of the envi-
ronment and the judgments by the stage level. If the prograsmb brackets, the stage level stays at O
and the type system degenerates to the one for the (subsef) afrtinary OCaml. Moreover, except for
the three staging-specific rules, the rest are the ordin&snl typing rules, uniformly indexed by the
stage level. Thus, aside from brackets, escapes and CSippthehecking of the staged code proceeds

http://okmij.org/ftp/ML/Meta0Caml . html#CSP
Ghttp://okmij.org/ftp/meta-programming/calculi.html#staged-poly
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identically to that for the ordinary code. In particulart-é&xpressions within brackets are handled and
generalized the same way they do outside brackets. For égamp

(1) .<let x
.<let f

[[in (2::x,"3" =x)>.
fun x — xin (f 2, f "3")>.

(2) .<letx = ref [] in (rset x 2, rset x "3")>. (x Does not type—check! x)

It appears hence that let-generalization and staging évegwnal features.
Consider however the following code

(3) .<let f = fun () — ref [] in
(rset (f () 2, rset (f ()) "3")

>.

The type-checker accepts it and infers the tipe list * string list) code. The variablef hence gets the
polymorphic type. After all, the RHS of the let-binding isnggctically the (functional) value. There
is really nothing wrong with (3)f can be either copied or shared across its uses without thgeha
semantics: the invocatiofi() in either case will produce a fresh reference cell holdingpty list,
later modified by prepending eith2ror " 3" to its contents.

Now consider the simple modification, along the lines of (6§2.2:

(4) let cbad =
<let f = fun () — .7( lift (ref [])) in
(rset (f ()) 2, rset (f () "3")
>.
run cbad
~~ Segmentation fault

It is also accepted, with the same inferred type — for anyioeref MetaOCaml including the current
one. The RHS of the let-binding is still syntactically a ftion; we merely modified its body. Running
that code however ends in the segmentation fault. One shmilthe surprised: we have managed to
generate and type-check (10) frg 1, the canonical example of the unsoundness of polymsrpfor
reference cells.

Thus staging breaks the restriction of the value restnigtimleashing the unsound generalization.
If we re-examine the value restriction we now notice an agdgiom, which is rarely stated explicitly:
there are no literals of reference types; every expresdidheotypet ref is not syntactically a value.
Cross-stage persistence, however, lets one stage shaeduigs with a future one. Suddenly there are
literals of the reference types: these are values imported the generator into the generated code.

The problem has been overlooked for more than a decade leecang of the formalizations of
staging have been complete enough, and hence do not hatigi@yimorphism along with reference
cells and shared CSP. There is currently no fix for the unstetrgeneralization problem. One solution
is proposed in[[15] but it is restrictive. Another possibtdusion is to force the CSP locally-created
values to follow the copying semantics. One may also prop#neralization if the RHS of a future-stage
let-binding contains an escape, thus introducing the exglrrelation of staging and let-polymorphism.
Along with bad programs, all these proposals outlaw good olmwestigating these trade-offs and finding
better ones is the subject of future work. The present papes ot solve the unsound staged let-
generalization problem either. However, we build a simfiiemework to deal with it, reducing the
problem to non-staged generalization.
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3 Trandlating the Staging Away

The stymieing problems encountered in the previous secimne at the confluence of staging, let-
polymorphism and effects. Itis only natural to wish to imigaste them in a simpler setting; for example,
to find a way to translate a staged calculus into the ordinase. orhere have been indeed proposed
several ‘unstaging translations’ [28,[9, 7], with similaotirations.

Translating the staging away is also practically significais the method for implementing staged
languages. The most attractive is a source-to-sourcedtams it lets us implement MetaOCaml just as
a pre-processor to OCaml, fully reusing the existing OCamntiler without modifying it (and having
to bear the burden of maintaining the modifications, in syiib ¥he mainline OCaml). This practical
application is the main reason to be interested in unstatgimglations.

Unfortunately, none of the existing unstaging translatigieal with polymorphic let-expressions.
Furthermore, an attempt to add them, describegBid, requires first-class polymorphism, making the
translation unworkable as a source-to-source translatidespite its attractiveness, the approach is a
dead-end — as has been widely acknowledged, including beuither.

We first describe i§3.1 how well the translation approach works without the payphic let, before
illustrating how it does not with it§4 introduces the solution along with the new questions iepder
let-polymorphism.

3.1 Stagingvia Code Combinators

The simplest approach for adding quotation to an existimguage is to write a pre-processor that
translates quoted expressions into ordinary ones, whielpresdefined functions that build and combine
code values, so-called code combinators [25] 28, 22]. Coddbmators may of course be used for code
generation directly, rather than through quotation, asbesn well demonstrated in Scala]22]. That
said, we will explain code combinators in the context of astaging translation, from the language with
guotations to the language without them — motivated by thetfmal benefits of such translation.

Our source language, Figure 2, is a simple subset of Meta®@Eammow, without let-expressions).
From now on, we restrict staging to two-levels only — in otherds, considering brackets without
nesting — as this turns out the overwhelmingly common usdagfesl languages. The constants of the
language are integeérand strings literals and the empty list. Besides abstraction and agipdic the
language includes pairs, consing to a list and the creatidrdareference of reference cells. We take the
mutation functionrset: a list ref — a — a list defined in§2.1 as a primitive. Cross-stage persistent
library identifiers such as are worked out into the syntax. On the other hand, cros® gtagsistence of
other identifiers must be explicitly marked with thesyntax. (The marking is inferred in MetaOCaml.)

Constants cax= i|s|]]

Variables x,y,z,f

Expressions ex= x|c|lee|funx—se|e+e]|(ee)]|ee|refe|lr]|rsetr
Staged expressionse +:= .<e>.|."e | %x

Figure 2: Source and target languages for the unstaginglataom

The target language of the translation is OCaml, withouttdVe.e., without the staged expressions.
On the other hand, it has additional constants for code g&orr defined by the following signature

(1) module type Code = sig
type +a cod
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Translation at the present-stage |

| x| = X [funx —e| — funx — | e |

| c] = C

|ele2 | — |el]||e2] | .<e>. | — [e]
Translation at the future-stagee |

[ x ] =X [ refe | —  ref_[e]

[i] —int i [ le ] —  rget [ e ]

[s] > ostri [ rset e ] — rset [ e]

[ ] — il [ ele2] — app|el][e2]

[el+e2] +— add[el][e2] [funx > e]| — lam (funx — [e])

[ (elie2) ] +— pair[el] [e2] [ e = e

[el:ze2] + cons[el][e2] [ %ox | > Csp X

Figure 3: Unstaging translation

val int: int — int cod

val str: string — string cod

val add: int cod — int cod — int cod
val lam: (a cod — B cod) — (a—f3) cod
val app: (a—f3) cod — (a cod — B cod)

val pair: o cod — B cod — (a * f3) cod
val nil: a list cod
val cons: o cod — a list cod — a list cod

val ref_: a cod — a ref cod
val rget: a ref cod — a cod
val rset: o list ref cod - o cod — a list cod

val csp:  a — o cod (* CSP local values x)
end

The signature specifies the collection of typed combindimigenerate code for our subset of OCamil:
int 1 builds the literall code,add combines two pieces of code into the addition expressian, Ete
combinatorlam builds the code of a function; its argument is an OCaml fumcthat returns the code
for the body upon receiving the code for the bound variabl®le&aOCaml expression like

(2) funx — .<funy — (y +1) = ."x>.

then corresponds to the plain OCaml expression with the coddinators:
(3) fun x — lam (fun y — cons (add y (int 1)) x)

Formally the unstaging translation is specified in Figurei®) two sets of mutually recursive rules:
| e | deals with the present-stage expressions of the sourcedgegand| e | handles expressions
within brackets. The former is essentially identity, witfetsingle non-trivial rule for brackets. The
translation seems straightforward, which is a great ssgpsince the related unstaging translations [6,
§3] and [9,[7] are all excruciatingly more complex and typeedied. The shown translation is novel,
which will become apparent as we discuss the implementafitime Code signature later.

Our translation is clearly syntax-directed but not typeeciied. Hence it is a source-to-source trans-
lation, which can be done by a macro-processor such as campp4tand-alone pre-processor. The rest
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[tcode | —=[t]cod [x%t] — x%t MY e:t] w— [T1HC e @ [t]
identity otherwise ~ [x%:t] +— x%tcod [THFe:t] — [IHC [e]: [t ]cod

Figure 4: Translation for types, typing environments ardbjuents

of the language system (type-checking, code-generatiangdard and user-defined libraries) is used as
it is.

The second property of the translation is that bindings iwitirackets are translated to ordinary
lambda-bindings. Coupled with the appropriate implem@niaof the lam combinator, this property
makes it easy to ensure hygiene. Correspondingly, vagdimand within brackets are translated to the
ordinary, present-stage variables — with the change inftgme t tot cod. One can see that change from
the type oflam, and more clearly from Figutd 4, which extends the trarstato the typing judgments
and environments described Figlie 1. The translation isgypreserving:

Proposition 1 If I " e : tholds then[T -" e : t] holds as well

In other words, a well-typed two-stage MetaOCaml expresgaranslated into a well-typed OCaml
expression. The proposition is easily proven by inductiarth®e typing derivation. If we also ensure
that individual code combinators produce well-typed caskee (below), any typing errors in the quoted
code manifest themselves as OCaml type errors emitted wipeachecking the translated expression.
Absent such errors, the quoted expression, and hence tkeageth code, are type-correct.

The following figure shows two implementations of tGede signature. CodeString combinators
generate ML code as text strings, justifying their name é&gdnerating combinators’.

(4) module CodeString = struct
type a cod = string

let int = string_of_int
let str x = "\"" " String.escaped x ~ "\""
let addxy = paren @@ x " "_+." "y
let lam body =
let var = gensym "x" in
"fun.” " var © "_—=_" " body var
let app f x = paren @@ f ~ """ " x
let csp x = ... marshaling/unmarshaling ...
end

CodeReal is a meta-circular interpreter, representing a code vadugnaOCaml thunk (which is also a
value).

(5) module CodeReal = struct
type a cod = unit - a
open DynBindRef

let int x = fun () — x
let str x = fun () — x
let addxy = fun () = x () +y()
let lam body =
let r = dnew () in
let b = body (fun () — dref r) in
fun () —
let denv = denv_get () in
fun x — dlet denvr x b
let appfx= fun() = f () (x ()
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let nil = fun () — []

let csp x = fun () — x
end
The code is utterly trivial, with the exception kfm, which does what a closure has to do: capture the
environment at the point of its creation. We rely on the saripterface for dynamic binding:
(6) module type DynBind = sig
type a dref
type denv
val dnew: unit — a dref
val dref: a dref — a
val dlet: denv — o dref = a — (unit = @) > w
val denv_get: unit — denv
end
wherednew creates a new unbound variabtief dereferences itgenv_get captures the current envi-
ronment andlet denv r x body sets the current environment denv, bindsr to x in it and evaluates
the body, whose result is returned after the original environmene#ored. The implementation, us-
ing either reference cells or delimited control is straigiward; see the accompanying source code for
details. The source code contains more examples of thedstageslation, including the obligatory
factorial: although ouode interface offers neither conditional branching nor remerdindings (nor
multiplication, for that matter), they are all obtainabia €SP.

Proposition 2 If e : t code is a program in our subset of MetaOCaml, thee | : unit—t is the plain
OCaml program (assuming th&ode interface is implemented b§odeReal) such thatrun e is observa-
tionally equivalenttg e | ().

Although the intuitions are clear, the rigorous proof okthroposition is a serious and interesting task.
We leave the proof as a PhD topic. The proposition justifiesiime ‘unstaging translation’; translating
staged OCaml code to plain OCaml. Our translation is rentdyksimple because of the novel imple-
mentation ofam in CodeReal. The earlier translations had to explicitly represent aaddlate the typing
and the value environments of an expressidbpnBind lets us piggy-back on the typing environment of
OCaml.

One can also intuitively see th@bdeString and CodeReal correspond: the behavior of the code
produced byCodeString is the same as the behavior of running the thuniCofleReal (modulo the
difference in the copying/sharing semantics of CSP). Tha@Qype-checker ensures that any thunk
built by CodeReal combinators is well-typed; therefore, it “will not go wrghtipanks to the soundness
of OCaml. Hence the code generated GydeString will also be well-typed and will not go wrong
either. The existence of tHeodeReal implementation is thus crucial to assuring the soundnessaddé
generation. Yet another proof of soundness is obtainedigfir@nother implementation Glode, back
into MetaOCaml:

(7) module CodeCode = struct
type a cod = a code

let int (x:int) = .<x>.

let str (x:string) = .<x>.

let addxy = .<."x + .7y>.

let lam body = .<fun x — ."(body .<x>.)>.
let appxy = .<."x .Ty>.

let csp x = .<x>.
end
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Proposition 3 If e : t code is a program in our subset of MetaOCaml, thew | : t code is the equiv-
alent MetaOCaml program (assuming tliede interface is implemented b§odeCode): that is, e and
| e | have the same side effects and either both diverge, or rédentical (moduloa-conversion) code
values.

The proof is left as another PhD topic.

Implementing staging by the translation into code comhirsatvorks surprisingly well: Scala’s
Lightweight Modular Staging (LMS) is based on similar id§22]. Scheme’s implementation of quasi-
guote is also quite alike; only it pays no attention to qudtadings and is hence non-hygienic. The
translation becomes more complex as we add to the targatdgegmore special forms such as loops,
pattern matching, type annotations, etc. They pose prahlbuat they can and have been dealt with, e.g.,
in [22]. What could not be dealt with is let-polymorphism.

3.2 TheLet-Polymorphism Problem

The staging translation runs into the roadblock once we afidrorphic let-bindings, to handle expres-
sions such as those shownA 3, repeated for reference below.
(1) .<letx = [Jin (2::x,"3"::x)>.

(2) .<let f = funx — xin (f 2, f "3")>.

It may seem we merely need to add to (hele signature the combinator that combirsgs andlam:
(3) wval let. : o cod — (a cod —f cod) — B cod

and the corresponding translation rule

[let x= eline2] — let_[el] (funx— [e2])
analogous téam. Then (1) is translated to
(4) let_ nil (fun x — pair (cons (int 2) x) (cons (str "3") x))

which, unfortunately, does not type-check.

Recall that our unstaging translation maps bindings in trete code to ordinary lambda-bindings.
This exactly is the problem: unlike let-bindings, lambdaelings in ML are not generalizable. First-
class polymorphism, if available, does not help since iuneg type annotations, which preclude the
source-to-source translation, done before type checking.

Let-polymorphism hence is the show-stopper for the unstaganslation. However attractive, we
cannot use the translation for implementing MetaOCamlggse give up on polymorphic let within
brackets, which is unpalatable). Therefore, MetaOCamkctly takes the steep implementation route:
modifying the OCaml front-end to account for brackets arwdpss, and the painful patching of the type-
checker to implement the staged type system of Figure 1r &festype-checking, the staging constructs
are eliminated by a variant of the unstaging translatior].[ITBhat translation manipulates OCaml’s
Typedtree, which represents the AST after type-checking. Although tilee bears OCaml types, it
is ‘untyped’: it is the ordinary data structure that does @awotorce any typing or scoping invariants.
Manipulating the tree is error-prone, with no (mechanicaliecked) assurances of correctness.

4 A New Trandation of Quoted let-expressions

We now present the new translation for quoted let-exprassihich works even with polymorphic let-
bindings. We attempt at the ‘rational derivation’ of thengskation, with our constant refrain of copying
vs. sharing.
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The previousj3.2 showed a straightforward translation for quoted lgiressions, which converts

(1) .<letx = 1:z[] in
(2::x,3:: x)>

(the quoted version of the first example§@f1) to the following code-combinator based code
(2) let- (cons (int 1) nil) @@ fun x —
pair (cons (int 2) x) (cons (int 3) x)
This example does not have let-polymorphism. But if it dice &are in trouble: the let-binding of
(1) is converted to the lambda-binding of (2). In the Hindley-Milner type-systeammbda-bindings,
unlike let-bindings, are not generalizable. We see the deddregardless of how thet_ combinator is
implemented.
To have any hope of generalization, we need a translatidrcthidd map a let-binding in the quoted
code to a let-binding. The putative translation should eonfl) into something like

(3) combl (let x = comb2 (cons (int 1) nil) in
comb3 (pair (cons (int 2) x) (cons (int 3) x)))

wherecombl, comb2, andcomb3 are yet to be determined combinators. This proposal seelyes tiwe
most general compositional, syntax-directed translatian has the desired let-binding. It fits within the
unstaging translation ¢88.1 in other ways: the future-stage variakie (1) of the typent list is mapped
in (3) to the present-stage variable of the expected (seeéf) typent list cod. After all, this the only
type that makes, sagons (int 2) x well-typed.

All is left is to appropriately implementombl, comb2 andcomb3, for all realizations of th&ode
interface. Proposition 3 imposes a constraint: Evalugi®)gvith the CodeCode implementation should
give back (1). And here we notice something odd. The expyeg$sons (int 1) nil) evaluates to<[1]>.,
according to the existing code-combinatorgotieCode. The result okomb2 (cons (int 1) nil) should
hence be or contain that singleton list; let us write it&s. . [1]...>.. The let-expression in (3) then
producescomb3 .<(2::(...[1]...)),(3::(...[1]...))>.. Code-generating combinators may only com-
bine pieces of code received as arguments but can neverddrairor examine them. Therefore, it does
not seem possible that our result can lead to (1), regardfeskatcombl or comb3 might do. We have
already inlined <[1]>., which we should have let-bound and shared instead.

The only way forward is to haveomb1 .<[1]>. to somehow generate something likdet y = [1]
in body>. and return the let-bound variable as a code value, thatyis-.. That does not seem possible
either. To build code for a let-expression we need the codth®RHS of the binding, and the code for
the body. The combinataombl does get the RHS code as the argument; but where is the body?

Fortunately we are stuck at the opportune place: the proklerare facing is real — but it has been
solved long time ago in the partial-evaluation communitiie Bolution is called ‘let-insertion[ [2, 17]
and requires access to continuations. déencc library of OCaml[12] has exactly the control operators
needed to implement the let-insertion interfiice

(4) type O scope

val new_scope: (w scope — w cod) — w cod
val genlet: w scope — a cod — a cod

These combinators can be used as follows:

(5) new_scope @O fun p —
lam (fun x— add x (genlet p (add (int 1) (int 2))))

"This let-insertion interface is introduced here for thessaktranslating quoted expressions and hence the pattesedor
genlet andnew_scope is determined by the translation.
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With the CodeCode implementation below it generateslet y = 142 in fun x — x + y>., which
sharesthe result of the subexpressidn-2 across all invocations of the function. In other words,
genlet p e inserts, at the place marked by the correspondieg_scope, alet statement that binds

to a fresh variable, and returns the code with the name ofwn@ble. We can finally complete the
tentative translation (3):

(6) new_scope @@ fun p —
let x = genlet p (cons (int 1) nil) in
pair (cons (int 2) x) (cons (int 3) x)
With the CodeCode implementation of the combinators that expression indeatliates to (1).
Formally, the new translation of let-expressions takeddahm
(7) [let x=eline2]+—
new_scope (funp — let x = genletp [el | in [ €2 ])
Our running example with let-polymorphism, example (2nirgZ. 1 repeated below
(8) .<letx = [Jin (2::x,"3"::x)>.

is hence translated to

(9) new_scope @@ fun p —
let x = genlet p nil in
pair (cons (int 2) x)
(cons (str "3") x)
which type-checks, and (with theodeCode combinators) gives back (8). Incidentally, the combinator
code withoutgenlet

(10) new._scope @@ fun p —
let x = nil in
pair (cons (int 2) x)
(cons (str "3") x)

also type-checks. However, it generates
(11) < (2], "3" =[] >.

where[] is inlined rather than shared. Thenlet combinator hence implements the sharing in the gen-
erated code rather than in the generator. The fact that thvatiablex in (9) gets the polymorphic type
is the indication, and the vindication, of the equivalen€eapying and sharing in this case. Although
the RHS of the let-binding in (9) is an expression — morecarreffectful expression, as we are about
to see — the generalization happens anyway, thanks to tieeckl/alue restriction, recalled #2.1. The
type variable inx list cod occurs in the covariant position: note the covariance atioot +o cod in the
Code signature.

The code that should not type check in MetaOCaml

(12) .<let x = ref [] in (rset x 2, rset x "3")>. (* Does not type—check! x)

is translated to

(13) new_scope @@ fun p —
let x = genlet p (ref_ nil) in
pair (rset x (int 2))
(rset x (str "3"))
(* Does not type—check! x)

and is rejected by OCaml as expected: the type variahie the inferred typea list ref cod for x is
non-variant and is not generalizedgdoes not get the polymorphic type and hence cannot be uskd in t
differently typed contexts.
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We implementegenlet, directly based ori [17], for all three realizations of thede signature: not
just for CodeString but also forCodeReal andCodeCode, to demonstrate soundness:

(14) module CodeletReal = struct
include CodeReal
open Delimcc type a scope = o cod prompt
let new_scope body = let p = new_prompt () in push_prompt p (fun () — body p)
let genlet pe = shiftOp (funk — let t = e () in k (fun () — t))
end

(15) module CodeletString = struct
include CodeString
open Delimcc type o scope = o cod prompt

let new_scope body = ... the same

let genlet pe =

let tvar = gensym "t" in

shiftO p (fun k — "let.” "~ tvar ~ "= " " e " ".in." " k tvar)
end

(16) module CodelLetCode = struct
include CodeCode
open Delimcc type a scope = o code prompt

let new_scope body = ... the same ...
let genlet p e = shiftO p (fun k — .<let t = ."ein ."(k .<t>.)>.)
end

(The code ohew _scope is identical in all three implementations, although thdira¢ions of the abstract
typea scope differ.) The typea prompt and the delimited control operatgsssh_prompt andshift0 are
provided by thelelimcc library [12].
Thegenlet is so powerful that it easily moves bound variables
(17) new_scope @@ fun p —
lam (fun x— add x (genlet p (add x (int 2))))
resulting in the generated coldi¢ y = x + 2 in fun x — x + y with the unbound variable. One may
prevent such undesirable behavior either with a complez gystem (whose glimpse can be caught in
[11]) or with a dynamic test, as implemented in MetaOCam].[14 our case, howevegenlet appears
in the code solely as the result of the translation of a quetgutession. Fortunately, our translation of
let-expressions putsew_scope “right above” genlet, never letting them be separated biaa binding.
In this case, delimited control, which underligslet, is safe (for proofs, see [10]).

4.1 ValueRestriction at the Whole New L evel

Alas, our new translation stumbles for the common case, lyfparphic function bindings such as the
following:
(1) .<letf = funx — x in (f 2, f "3")>.

The translation

(2) new_scope @@ fun p —
let f = genlet p (lam (fun x — x)) in

pair (app f (int 1)) (app f (str "3"))
(x Does not type—check! x)

is rejected by OCaml: thgenlet expression has the tyger—a) cod, which is not covariant iro.
Generalizing expressions of such types is uns@umdherwise, we will have to accept the following

8However, if the target language of code generation has merus’ effects and does not need value restriction, we may
as well allow generalizing expressions of the typsd regardless of the variance of type variables.in
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clearly undesirable code — the quoted version of our runwiltajn, the bad example (10) ¢P.1.

(3) .<letf = letr= ref [] in
fun x — rset r x

in (f 1, f"3")>.
(* Does not type—check! x)

whose translation

(4) new_scope @@ fun pl —
let f = genlet pl
(new_scope @@ fun p2 —

let r = genlet p2 (ref_ nil) in
lam (fun x — rset r x)) in

pair (app f (int 1)) (app f (str "3"))

(* Does not type—check! x)
would have type-checked had we allowed generalizationhi®gdnlet pl expression.

The problematic staged code (3) does not type-check acgptdithe system of Figufd 1 (and in
MetaOCaml): the (GenLet) rule does not apply because the &kt let-binding in (3) is not syntac-
tically a value. Hence we need something like the valueiotisin to likewise prevent generalization in
(4) while still allowing it in (2).

Therefore, we amend the translation of let-expressionsn (@, with the following

(5) [let x= funz —eline2] —
new_scope (fun p — let x = genletfun p (funz — [ el ]) in [ €2 ])

where

(6) wval genletfun: w scope — (o cod — B cod) — (a—p) cod
(x provisional ! x)
is a new code-combinator to be added to the let-insertioarfate. In other words, our translation
should recognize whenlat-bound expression is syntactically a function, and gisgetfun rather than
the generagenlet combinator.
With the amended translation, the good example (1) is tatedlas

(7) new_scope @@ fun p —
let f = genletfun p (fun x — x) in
pair (app f (int 1))
(app f (str "3"))
(* See the refined version below! x)
and will type-check. The translation (4) of the bad exam@ewill have to usegenlet rather than
genletfun since the RHS of the let-expression in (3) is not syntadsicaafunction. As we said, (4) does
not actually type-check.

We have thus separated the let-insertion combinatorshietgeneragenlet and the specifigenletfun,
which applies only to the translation of what looks like adtion. (We need similagenletX for other
polymorphic values of non-covariant types, which are jaFar genlet, generalization occurs only for
covariant type variables; f@enletfun, the generalization should occur always.

There remains a question how to make the generalizatiowiayal occur forgenletfun expressions
like those in (7), short of modifying the OCaml compiler. isentally, everObj.magic does not seem to
help us with expressions that the relaxed value restricdamot generalize: an application@bj.magic
is not syntactically a value. The answer is admittedly a haeleertheless, it gives us another standpoint,
however awkward, to hear the refrain of copying and shary it also works with the extant OCaml
compiler.

Let us step back to look at the clearly flawed translation pf (1
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(8) let f = fun () — (lam (fun x — x)) in
pair (app (f ()) (int 1))
(app (f () (str "3"))
and contemplate what is wrong with it. On the upside, thestedad expression (8) does type-check:
f is bound to a thunk (syntactically a value) and its type isceegeneralized through the ordinary
value restriction. Sincéis bound to a thunk we have to add explifjtapplications at each place it is
used. Evaluating (8) with th€odeString implementation of code combinators shows the generatesl cod
((fun x2 — x2 1), (fun x1 — x1 "3")), with the inlined rather than shared identity function. Véelh
rather the identity function be let-bound and shared. Haléarned thagenlet introduces let-bindings
into the generated code, the next attempt at the translatil) is

(9) new_scope @@ fun p —
let f = fun () — genlet p (lam (fun x — x)) in

pair (app (f ()) (int 1))
(app (f ()) (str "3"))

It also type-checks, sindds still bound to a thunk. The generated code

(10) let t2 = funxl — x1in

let t4 = fun x3 — x3in

((t4 1), (t2 "3"))
is still unsatisfactory: we had rather the two applicationthe pair used the same binding of the identity
function. Wherf () in (9) is first evaluated, it generates a let-binding andrretthe code with the bound
variable. We want the second invocationfdf) to return the code for the very same bound variable. In
other words, we would like to memoifeMemoization[[19] indeed was meant to make copying behave
like sharing.

The trick hence is introducing a thunk into the let-bindinghe translation to get around the gener-
alization problem and introducing memoization to resttie gharing destroyed by thunking. In effect,
we do ‘double memoization’: usingenlet to ‘memoize’ the identity function in the generated code and
memoize the invocation @enlet at the present stage. Once this is understood, the resiighdforward.

To make the translation similar to (7), we combgelet with the memoization intgenletfun:

(11) type w funscope
val new_funscope : (w funscope — w cod) — w cod
val genletfun: w funscope — (a0 cod — B cod) — (a—pf) cod

The final translation of (1) then reads:

(12) new_funscope @@ fun p —
let f = fun () — genletfun p (fun x — x) in
pair (app (f ()) (int 1))
(app (f () (str "3"))
Unlike (7), we had to replace the occurrence wfith f () — explicitly marking the type instantiation, so
to speak. This complication is still possible to implemeithvthe source-to-source translation (call-by-
name let-binding of [18] would be really handy here).
The double-memoizingenletfun can be easily and generically implemented, with a small bit o
magic
(13) type afun = | AFun : (a0 — ) cod — afun
| ANone : afun
type w funscope = w scope * afun ref
let new_funscope body = new_scope (fun p — body (p, ref ANone))
let genletfun : w funscope — (a cod — B cod) — (a—f) cod =

fun (p,r) body —
match !Ir with
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| ANone — let fn = lam body in
let x = genlet p fn in
r := AFun x; x

| AFun x — Obj.magic x

The code uncannily resembles (4)%@f3.

One may wonder if it would be better to agddnletfun to the OCaml type-checker as an ad hoc,
always-generalize case. The answer at present should be ganletfun is still unsound, in the edge
case of (4) of§2.3 — the example that is also unsound in the present Meta©OC#are is this example
again, for reference

(14) .<let f = fun () — .7(lift (ref [])) in
(rset (f () 2, rset (f () "3")>.

Its translation

(15) new_funscope @@ fun p —
let f = fun () — genletfun p (fun _ — csp (ref [])) in

pair (rset (app (f ()) (csp ())) (int 1))
(rset (app (f () (esp ())) (str "3"))
type-checks — and when run witbdeReal exhibits the same segmentation fault it does in the case of
the corresponding MetaOCaml code.
It seems our unstaging translation is just as sound — or maseuas MetaOCaml. Solving the
soundness problem of MetaOCaml describegliid will make, we conjecture, the unstaging translation
fully sound as well. Much work lies ahead.

5 Conclusions

We have presented a new, typing-preserving translation &wigher-order typed staged language, with
hygienic quotations and unquotations, to the languageowitquotations. Code-generation is accom-
plished through a library of code-generation combinat@sir translation is remarkably simpler than
other unstaging translations: it is not type-directed aamlwe accomplished as a source-to-source trans-
formation. Mainly, the translation works for polymorphieti let-expressions within quotes are trans-
formed to also let-expressions, hence preserving gematiain. All throughout the presentation we
emphasized deep connections, between polymorphism arnidgha

Our translation is already a viable method of implementitaed languages. Yet the theoretical
work has just began. Yet another feature of our translasoibug-preservation’: the restrictions and
unsound edge cases of let-polymorphic expressions arerpeekin the translation. The problems hence
can be investigated in a simpler setting, without staging.

We thus propose a research program:

1. Formally establishing the equivalence propertieSCofieReal, CodeCode and CodeString and
formally justifying the translation;

Generalizing from two-stage to multiple-stages, thabisnultiple levels of quotations;
Proving that the edge case describefPd is the only one whergenletfun is unsound;

Relaxing the value restriction even more so Heatletfun could be implemented without magic;

a r wDN

Investigating trade-offs of various solutions to theaumsdness problem 2.3 and finding the
solution with the least loss in expressiveness and corweaie
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