
1

let (rec) insertion without
Effects, Lights or Magic

Oleg Kiselyov Jeremy Yallop

Tohoku University, Japan

University of Cambridge, UK

PEPM2020
January 18, 2022

arXiv:2201.00495

2

Outline

I Introduction

let-insertion

Definitions

Parameterized, recursive definitions

Conclusions

3

Summary

I What let-insertion actually means

I The first formal model that uniformly treats let-insertion,
letrec- insertion and mutually letrec-insertion

I No continuation or state effects

I Not just theory:
I Executable semantics: the way to implement let(rec)

insertion in any code generation framework,
without any coroutines, delimited continuations or other
run-time or compiler magic

I Simpler than before interface for (mutual) letrec insertion
I Implemented in the current MetaOCaml

4

Code Generation: Code Template

printf "(%s + %d) * %s" e1 n e2

‘(* (+ ,e1 ,n) ,e2)

5

Code Combinators

(e1 + int n) * e2

where

e1,e2 : int code

+,* : int code → int code → int code

int : int → int code

5

Code Combinators

(e1 + int n) * e2

λ(λx. (int 1 + int 2) + x)

where

e1,e2 : int code

+,* : int code → int code → int code

int : int → int code

λ : (α code → β code) → (α → β)code

5

Code Combinators

(e1 + int n) * e2

λx. (int 1 + int 2) + x

where

e1,e2 : int code

+,* : int code → int code → int code

int : int → int code

λ : (α code → β code) → (α → β)code

5

Code Combinators

(e1 + int n) * e2

λx. (int 1 + int 2) + x

 "fun x7 -> (1+2) + x7"

where

e1,e2 : int code

+,* : int code → int code → int code

int : int → int code

λ : (α code → β code) → (α → β)code

5

Code Combinators

(e1 + int n) * e2

λx. (int 1 + int 2) + x

 "fun x7 -> (1+2) + x7"

λx. let (int 1 + int 2) λy. y + x

 "fun x7 -> let y8 = (1+2) in y8 + x7"

where

e1,e2 : int code

+,* : int code → int code → int code

int : int → int code

λ : (α code → β code) → (α → β)code
let : α code → (α → β)code → β code

6

Outline

Introduction

I let-insertion

Definitions

Parameterized, recursive definitions

Conclusions

7

Compositionality. . . and the lack of it

(λx. let (int 1 + int 2) (λy. y + x))

 "(fun x7 -> let y8 = (1+2) in (y8 + x7))"

7

Compositionality. . . and the lack of it

(λx. let (int 1 + int 2) (λy. y + x))

 "(fun x7 -> let y8 = (1+2) in (y8 + x7))"

let-insertion

(λx. (glet (int 1 + int 2) + x))

 "let y8 = (1+2) in (fun x7 -> (y8 + x7))"

where

glet : α code → α code

8

Sharing

let x = (int 6 + int 7) in

((x + int 20) * (x + int 30)) / int 100

 "(((6 + 7) + 20) * ((6 + 7) + 30)) / 100"

8

Sharing

let x = (int 6 + int 7) in

((x + int 20) * (x + int 30)) / int 100

 "(((6 + 7) + 20) * ((6 + 7) + 30)) / 100"

let x = glet (int 6 + int 7) in

(glet (x + int 20) * glet (x + int 30)) / int 100

"let x4 = (6 + 7) in

let x5 = x4 + 20 in

let x6 = x4 + 30 in

(x5 * x6) / 100"

9

Outline

Introduction

let-insertion

I Definitions

Parameterized, recursive definitions

Conclusions

10

Definitions

“. . . the definitions are not part of our subject,
but are, strictly speaking, mere typographical conve-
niences.. . .

In spite of the fact that definitions are theoretically
superfluous, it is nevertheless true that they often con-
vey more important information than is contained in the
propositions in which they are used. . . .

The collection of definitions embodies our choice of
subjects and our judgement as to what is most impor-
tant. Secondly, . . . the definition contains an analysis
of a common idea, and may therefore express a notable
advance.”

Whitehead & Russell. Principia mathematica, volume I.
Cambridge Univ. Press, 1910, p12

10

Definitions

“. . . the definitions are not part of our subject,
but are, strictly speaking, mere typographical conve-
niences.. . .

In spite of the fact that definitions are theoretically
superfluous, it is nevertheless true that they often con-
vey more important information than is contained in the
propositions in which they are used. . . .

The collection of definitions embodies our choice of
subjects and our judgement as to what is most impor-
tant. Secondly, . . . the definition contains an analysis
of a common idea, and may therefore express a notable
advance.”

Whitehead & Russell. Principia mathematica, volume I.
Cambridge Univ. Press, 1910, p12

10

Definitions

“. . . the definitions are not part of our subject,
but are, strictly speaking, mere typographical conve-
niences.. . .

In spite of the fact that definitions are theoretically
superfluous, it is nevertheless true that they often con-
vey more important information than is contained in the
propositions in which they are used. . . .

The collection of definitions embodies our choice of
subjects and our judgement as to what is most impor-
tant. Secondly, . . . the definition contains an analysis
of a common idea, and may therefore express a notable
advance.”

Whitehead & Russell. Principia mathematica, volume I.
Cambridge Univ. Press, 1910, p12

11

The main difficulty of making definitions

I Definitions precede uses
in the finished text

I In writing, (attempted) use precedes definition

Definitions are made in hindsight

They are read forwards, but generated backwards

11

The main difficulty of making definitions

I Definitions precede uses
in the finished text

I In writing, (attempted) use precedes definition

Definitions are made in hindsight

They are read forwards, but generated backwards

12

An example of making a definition

\begin{frame}{Sharing}

\begin{tabular}[C]{l}
let x = \textcolor{red}{(}

12

An example of making a definition

\documentclass{beamer}
\newcommand{\lam}{\quant\lambda}

\title{\textsf{let} (\textsf{rec}) insertion

without\\Effects, Lights or Magic}

Going back

12

An example of making a definition

\documentclass{beamer}
\newcommand{\lam}{\quant\lambda}

\def\rbra{\textcolor{red}(}

\title{\textsf{let} (\textsf{rec}) insertion

without\\Effects, Lights or Magic}

Making a definition

12

An example of making a definition

\begin{frame}{Sharing}

\begin{tabular}[C]{l}
let x = \rbra

Returning (resuming)

13

A different approach

Margin notes

14

Outline

Introduction

let-insertion

Definitions

I Parameterized, recursive definitions

Conclusions

15

Ackermann function

let rec ack = λm.λn.
if m=0 then n+1 else

if n=0 then ack (m-1) 1 else

ack (m-1) (ack m (n-1))

in ack 2

16

Ackermann function generator

letrec λack.λm.λn.
if (m = int 0) (n + int 1)

(if (n = int 0) (ack @ (m - int 1) @ (int 1))

(ack @ (m - int 1) @ (ack @ m @ (n - int 1)))))

(λack. ack @ int 2)

17

Specialized Ackermann function generator

let rec ack = λm.λn.
if m=0 then n + (int 1) else

if (n = int 0)

(gletrec (m-1) (ack (m-1)) @ int 1)

(gletrec (m-1) (ack (m-1)) @

(gletrec m (ack m) @ (n-int 1)))

in gletrec 2 (ack 2)

17

Specialized Ackermann function generator

let rec ack = λm.λn.
if m=0 then n + (int 1) else

if (n = int 0)

(gletrec (m-1) (ack (m-1)) @ int 1)

(gletrec (m-1) (ack (m-1)) @

(gletrec m (ack m) @ (n-int 1)))

in gletrec 2 (ack 2)

let rec x = λu. if u = 0 then y 1 else y (x (u - 1))

and y = λv. if v = 0 then z 1 else z (y (v - 1))

and z = λw. w + 1

in x

18

Sharing, again

let x = glet (int 6 + int 7) in

(glet (x + int 20) * glet (x + int 30)) / int 100

"let x4 = (6 + 7) in

let x5 = x4 + 20 in

let x6 = x4 + 30 in

(x5 * x6) / 100"

19

Outline

Introduction

let-insertion

Definitions

Parameterized, recursive definitions

I Conclusions

20

Conclusions

I What let-insertion actually means

I The first formal model that uniformly treats let-insertion,
letrec- insertion and mutually letrec-insertion

I No continuation or state effects

I Not just theory:
I Executable semantics: the way to implement let(rec)

insertion in any code generation framework,
without any coroutines, delimited continuations or other
run-time or compiler magic

I Simpler than before interface for (mutual) letrec insertion
I Implemented in the current MetaOCaml

	Introduction
	let-insertion
	Definitions
	Parameterized, recursive definitions
	Conclusions

