let (rec) insertion without
Effects, Lights or Magic

Oleg Kiselyov Jeremy Yallop

Tohoku University, Japan

University of Cambridge, UK

PEPM2020
January 18, 2022

arXiv:2201.00495

Outline

» Introduction

let-insertion

Definitions

Parameterized, recursive definitions

Conclusions

Summary

» What let-insertion actually means

» The first formal model that uniformly treats let-insertion,
letrec- insertion and mutually letrec-insertion

» No continuation or state effects
> Not just theory:

» Executable semantics: the way to implement let(rec)
insertion in any code generation framework,
without any coroutines, delimited continuations or other
run-time or compiler magic

» Simpler than before interface for (mutual) letrec insertion

» Implemented in the current MetaOCaml

Code Generation: Code Template

printf "(%s + %d) * %s" el n e2

“(x (+ ,el ,n) ,e2)

Code Combinators

(el + int n) * e2

where
el,e2 : int code
+,% : int code — int code — int code
int : int — int code

Code Combinators

(el + int n) * e2

A(x. (int 1 + int 2) + x)

where
el,e2 : int code
+,% : int code — int code — int code
int : int — int code
A (acode — [code) — (o — [)code

Code Combinators

where

el,e2:
Pl
int :
: (@ code — [code) — (a — [)code

(el + int n) * e2

Ax. (int 1 + int 2) + x

int code
int code — int code — int code
int — int code

Code Combinators

where

el,e2 :
+,%
int

(el + int n) * e2

Ax. (int 1 + int 2) + x
~ "fun x7 -> (142) + x7"

int code

: int code — int code — int code
: int — int code
: (0ecode — [code) — (a — f)code

Code Combinators

(el + int n) * e2

Ax. (int 1 + int 2) + x
~ "fun x7 -> (142) + x7"

Ax.let (int 1 + int 2) Ay.y + x
~» "fun x7 -> let y8 = (1+2) in y8 + x7"

where
el,e2 : int code
+,% : int code — int code — int code
int : int — int code
A: (acode — [code) — (a — [)code
let : acode — (o — [f)code — [code

Outline

Introduction

» let-insertion

Definitions

Parameterized, recursive definitions

Conclusions

Compositionality. .. and the lack of it

(Ax.let (int 1 + int 2) (Ay.y + x))
~ "(fun x7 -> let y8 = (1+2) in (y8 + x7))"

Compositionality. .. and the lack of it

(Ax.let (int 1 + int 2) (Ay.y + x))
~ "(fun x7 -> let y8 = (1+2) in (y8 + x7))"

let-insertion

(Ax. (glet (int 1 # int 2) + x))
~» "let y8 = (1+2) in (fun x7 -> (y8 + x7))"

where

@ : o code — « code

Sharing

let x = (int 6 + int 7) in
((x + int 20) * (x + int 30)) / int 100

~ "(((6 +T7) +20) * ((6 +7) + 30)) / 100"

Sharing

let x = (int 6 + int 7) in
((x + int 20) * (x + int 30)) / int 100

~ "(((6 + 7) +20) * ((6+7) + 30)) / 100"

let x = glet (int 6 + int 7) in
(glet (x + int 20) * glet (x + int 30)) / int 100

"let x4 = (6 + 7) in
let x5 = x4 + 20 in
let x6 = x4 + 30 in
(x5 * x6) / 100"

Outline

Introduction

let-insertion

» Definitions

Parameterized, recursive definitions

Conclusions

Definitions

“..the definitions are mnot part of our subject,
but are, strictly speaking, mere typographical conve-
niences.. . .

In spite of the fact that definitions are theoretically
superfluous, it is nevertheless true that they often con-
vey more important information than is contained in the
propositions in which they are used. ...

The collection of definitions embodies our choice of
subjects and our judgement as to what is most impor-

tant. Secondly, ...the definition contains an analysis
of a common idea, and may therefore express a notable
advance.”

Whitehead & Russell. Principia mathematica, volume I.
Cambridge Univ. Press, 1910, p12

Definitions

“..the definitions are mnot part of our subject,
but are, strictly speaking, mere typographical conve-
niences.. . .

In spite of the fact that definitions are theoretically
superfluous, it is nevertheless true that they often con-
vey more important information than is contained in the
propositions in which they are used. ...

The collection of definitions embodies our choice of
subjects and our judgement as to what is most impor-

tant. Secondly, ...the definition contains an analysis
of a common idea, and may therefore express a notable
advance.”

Whitehead & Russell. Principia mathematica, volume I.
Cambridge Univ. Press, 1910, p12

Definitions

“..the definitions are mnot part of our subject,
but are, strictly speaking, mere typographical conve-
niences.. . .

In spite of the fact that definitions are theoretically
superfluous, it is nevertheless true that they often con-
vey more important information than is contained in the
propositions in which they are used. ...

The collection of definitions embodies our choice of
subjects and our judgement as to what is most impor-

tant. Secondly, ...the definition contains an analysis
of a common idea, and may therefore express a notable
advance.”

Whitehead & Russell. Principia mathematica, volume I.
Cambridge Univ. Press, 1910, p12

The main difficulty of making definitions

» Definitions precede uses
in the finished text

» In writing, (attempted) use precedes definition

11

The main difficulty of making definitions

» Definitions precede uses
in the finished text

» In writing, (attempted) use precedes definition

Definitions are made in hindsight

They are read forwards, but generated backwards

11

An example of making a definition

\begin{frame}{Sharing}

\begin{tabular}[C]{1}
let x = \textcolor{red}{(}_

12

An example of making a definition

\documentclass{beamer}
\newcommand{\lam}{\quant\lambda}

\title{\textsf{let} (\textsf{rec}) insertion
without\\Effects, Lights or Magic}

Going back

12

An example of making a definition

\documentclass{beamer}
\newcommand{\lam}{\quant\lambda}

\def\rbra{\textcolor{red}(}

\title{\textsf{let} (\textsf{rec}) insertion
without\\Effects, Lights or Magic}

Making a definition

12

An example of making a definition

\begin{frame}{Sharing}

\begin{tabular}[C]{1}
let x = \rbra_

Returning (resuming)

12

A different approach

Margin notes

13

Outline

Introduction

let-insertion

Definitions

» Parameterized, recursive definitions

Conclusions

14

Ackermann function

let rec ack = Am.\n.
if m=0 then n+l1 else
if n=0 then ack (m-1) 1 else
ack (m-1) (ack m (n-1))
in ack 2

15

Ackermann function generator

letrec Aack.Am.An.
if (m = int 0) (n + int 1)
(if (n = int 0) (ack @ (m - int 1) @ (int 1))
(ack @ (m - int 1) @ (ack @m @ (n - int 1)))))
(Mack. ack @ int 2)

16

Specialized Ackermann function generator

let rec ack = Am.An.
if m=0 then n + (int 1) else
if (n = int 0)
(gletrec (m-1) (ack (m-1)) @ int 1)
(gletrec (m-1) (ack (m-1)) @

(gletrec m (ack m) @ (n-int 1)))
in gletrec 2 (ack 2)

17

Specialized Ackermann function generator

let rec ack = Am.An.
if m=0 then n + (int 1) else
if (n = int 0)
(gletrec (m-1) (ack (m-1)) @ int 1)
(gletrec (m-1) (ack (m-1)) @
(gletrec m (ack m) @ (n-int 1)))
in gletrec 2 (ack 2)

let rec x = Au.if u = 0 then y 1 else y (x (u - 1))
and y = Av.1if v = 0 then z 1 else z (y (v - 1))
and z = Aw.w + 1

in x

17

Sharing, again

let x = glet (int 6 + int 7) in
(glet (x + int 20) * glet (x + int 30)) / int 100

"let x4 = (6 + 7) in

let x6 = x4 + 20 in
A

let x6 = x4 + 30 in

(x6 * x6) / 100"

18

Outline

Introduction

let-insertion

Definitions

Parameterized, recursive definitions

» Conclusions

19

Conclusions

» What let-insertion actually means

» The first formal model that uniformly treats let-insertion,
letrec- insertion and mutually letrec-insertion

» No continuation or state effects
> Not just theory:

» Executable semantics: the way to implement let(rec)
insertion in any code generation framework,
without any coroutines, delimited continuations or other
run-time or compiler magic

» Simpler than before interface for (mutual) letrec insertion

» Implemented in the current MetaOCaml

20

	Introduction
	let-insertion
	Definitions
	Parameterized, recursive definitions
	Conclusions

