
LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC

OLEG KISELYOV AND JEREMY YALLOP

Tohoku University, Japan
e-mail address: oleg@okmij.org
URL: http://okmij.org/ftp/

University of Cambridge, UK
e-mail address: jeremy.yallop@cl.cam.ac.uk

Abstract. Let insertion in program generation is producing code with definitions (let-
statements). Although definitions precede uses in generated code, during code generation
‘uses’ come first: we might not even know a definition is needed until we encounter a
reoccurring expression. Definitions are thus generated ‘in hindsight’, which explains why
this process is difficult to understand and implement – even more so for parameterized,
recursive and mutually recursive definitions.

We have earlier presented an interface for let(rec) insertion – i.e. for generating (mutually
recursive) definitions. We demonstrated its expressiveness and applications, but not its
implementation, which relied on effects and compiler magic.

We now show how one can understand let insertion, and hence implement it in plain
OCaml. We give the first denotational semantics of let(rec)-insertion, which does not rely
on any effects at all. The formalization has guided the implementation of let(rec) insertion
in the current version of MetaOCaml.

1. Introduction

Code generation, whether using quasiquotes or code combinators, is compositional: nested
function calls in the generating program lead to nested expressions in the generated code,
and code for larger expressions is built by incorporating code for sub-expressions unchanged.
Here is an example, with code combinators (used later in the paper). Suppose t1 denotes
the code “1+2”; +, clet and λ are the combinators to generate addition (resp., let- and
lambda-expressions). Then

λx. (clet t1 (fun y → x + y))

generates the code

fun x7 → (let y8=1+2 in (x7 + y8))

Key words and phrases: metaprogramming, code generation, two-level languages, let-insertion, mutual
recursion.

Preprint submitted to
Logical Methods in Computer Science

c© Oleg Kiselyov and Jeremy Yallop
CC© Creative Commons

http://creativecommons.org/about/licenses

2 OLEG KISELYOV AND JEREMY YALLOP

(The parentheses show the corresponding nested scopes.)
There is, however, often a need for a sub-expression to generate a let-statement that

should scope over a larger (parent) expression [Kis14] – e.g. to avoid recomputations.
Continuing the example, we would like to replace clet above with a combinator glet such
that

λx. (glet t1 (fun y → x + y))

would now generate a more optimal

let y8=1+2 in fun x7 → (x7 + y8)

As this example shows, let-insertion is non-compositional: it scrambles the nesting of
generated binding forms, opening the possibility of generating code with unbound or
mistakenly bound variables [KKS15]. It is not a mere possibility: generating code with
unbound variables does occur in practice, and is difficult to debug, as reported in [ORP16].
The non-compositionality becomes glaring when generating recursive (and especially mutually
recursive) definitions [YK19].

Our aim is to understand the meaning of the let-inserting code generators, such as glet
and its more general forms genlet or genletrec. We have two goals: designing a type system
to statically prevent the generation of ill-scoped code; and reasoning about programs that
generate let(rec) statements (not just about the code that they generate).

We report work-in-progress towards these goals: a denotational semantics that for the
first time describes what genlet and genletrec mean by themselves, and in a compositional
way. That is, the apparent intrinsic non-compositionality of let-insertion described above
turns out to be a mere appearance.

The key idea is virtual let-bindings: whereas clet introduces an ordinary let-binding
whose location is fixed, glet generates the code for a fresh variable accompanied by a virtual
binding of that variable. Virtual bindings do not have (yet) a fixed location: they are
attached to the expression that uses their bound variables and ‘float up’ when their attached
expression is incorporated into a bigger expression. Eventually, when they reach a point that
a metaprogrammer has marked with a dedicated primitive, virtual bindings are converted to
real let-bindings.

Our denotational semantics is executable: it serves as a small standalone meta-pro-
gramming system that implements the previously-proposed interface [YK19] for generating
mutually recursive definitions; it is sufficiently complete to express the example programs used
to introduce that interface. Compositionality let us build the system in pure OCaml using
no effects. Furthermore, our semantics has already led to improvements and simplifications
to the earlier interface.

Remark 1.1. When saying that our system performs let-insertion without any effects, we
need to clarify what an effect is. After all, even lambda-abstractions [Kis17] or variable
substitution [KMS21, §2.1] may be regarded as effects. Previously, let-insertion required
control effects (realized as delimited control or continuation-passing transformation) [Bon92,
LD94] or, at the very least, state (realized as mutable state or state-passing) [SK01]. The
present paper demonstrates that none of these are needed. As a consequence, if in a generator
expression such as e1 + e2, the let-insertion-free summand generators e1 and e2 may be
evaluated independently or even concurrently, they can be so evaluated even if either or both
perform let-insertion. That let-insertion does not have to impose an order on evaluation is
new and surprising.

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 3

Variables x,y,z,u,f,n,r. . .

Types t ::= int | bool | t → t

Expressions

e ::= x | c0 | c1 e | c2 e e | c3 e e e

| λx. e | e e

| if e then e else e

| let x=e in e

| let rec x=e and x=e . . . in e

Values v ::= c0 | λx. e

Figure 1: Syntax of the base calculus; ci are constants of arity i: see Fig. 2, left column.

The next section introduces denotational semantics for code generation, which §3 extends
to support the ordinary let insertion, and then mutually recursive-let–insertion. §4 describes
the realization in the current version of MetaOCaml. Related work is briefly described in §5.

The complete code of the executable semantics along with many examples is available
online.1 MetaOCaml (version N111) incorporating let(rec) insertion is available from Opam.2

2. Semantics of Code Generation

As the Base calculus we take the standard call-by-value simply-typed lambda calculus with
constants, ordinary let-expressions and (potentially mutually) recursive letrec-expressions:
think of the most basic, side-effect–free subset of OCaml. Figure 1 presents its syntax.
There, c0, c1, c2 and c3 stand for constants of the corresponding arity. The calculus includes
integer and boolean literals (as zero-arity constants), the successor operation succ as an
arity-1 constant, and arithmetic and comparison operations on integers, of obvious types,
as arity-2 constants: see Fig. 2, left column. The type system with judgements Γ ` e:t is
entirely standard and elided for brevity.

A different way of presenting the calculus and its type system is in the form of an OCaml
signature (Appendix A), which helps make the semantics executable.

Here are some sample expressions:

t1 := 1 + 2

sq := λx. x ∗ x
gib5 := λx.λy.

let rec loop n =

if n=0 then x else if n=1 then y else

loop (n−1) + loop (n−2)
in loop 5

The notation name := exp is not part of the calculus; it is used to attach a name to an
expression for easy reference. The function gib5 computes the 5th element of the Fibonacci
sequence whose first two elements are given as arguments.

The Base calculus both represents the code that we generate and serves as the core of
the generating code. For generation, we extend Base with an additional family of types

1http://okmij.org/ftp/meta-programming/genletrec
2https://opam.ocaml.org/

http://okmij.org/ftp/meta-programming/genletrec
https://opam.ocaml.org/

4 OLEG KISELYOV AND JEREMY YALLOP

0,1,2,3,. . . : int

true, false: bool

succ: int → int

+: int → int → int

=: int → int → bool

int: int → int code

bool: bool → bool code

+: int code → int code → int code

=: int code → int code → bool code

if: bool code → t code → t code → t code

λ: (t1 code → t2 code) → (t1 → t2) code

@: (t1 → t2) code → t1 code → t2 code

clet: t1 code → (t1 code → t2 code) → t2 code

Figure 2: Constants of Base (left column) and its extension Codec (right column) with their
types and arities: the arity of a constant is the number of arrows in its type.
Although the constants may have function types, they are not expressions, unless
used with the right number of arguments. The metavariable t stands for any type.
For arity-2 constants such as + and =, we use infix notation. We write expressions
with the constant λ, viz., λ(λx.e), as λx.e. We silently add other arithmetic and
comparison constants and code combinators, similar to + and =.

t code whose values represent generated Base expressions of type t. We also add the means
of producing these code values: constants (a.k.a. code-generating combinators) in the right
column of Fig.2. Below are some expressions in this extension of Base, called Codec; each
expression serves as a generator of the corresponding earlier Base expression:

ct1 := int 1 + int 2

csq := λx. x ∗ x
cgib5 := λx.λy.

let rec loop n =

if n=0 then x else if n=1 then y else

loop (n−1) + loop (n−2)
in loop 5

Here int generates the code of an integer literal; + combines the code of summands to
produce the code of an addition expression; λx.body generates the code of a function given
a generator for its body, the variable x within the expression body representing the bound
variable in the (to be) generated function.

In what sense csq and cgib5 respectively represent sq and gib5 will be clear after we
describe the semantics of the calculus.

2.1. Semantics of Base. We consider two denotational semantics of Base, to be indexed
by the subscripts R (for ‘run’) or S (for ‘show’); X (or omitted subscript) stands for either.

First, notated by the subscript R, is the standard Scott-Strachey semantics for a typed
Church-style calculus, with one small wrinkle. Its semantic domains and the interpretation
TR
[
−
]

of its types are standard:

TR
[
int
]

= Z⊥ TR
[
bool

]
= {tt, ff,⊥} TR

[
t1 → t2

]
= TR

[
t1
]
→ TR

[
t2
]

If A is a set and B is a domain, A→ B is a continuous map from A to B, which is also a
domain. We also introduce N as a countably infinite set of names and L as a set of finite
sequences of small (i.e. bounded) numbers, for which we adopt the OCaml list notation.

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 5

Such a sequence can also be considered a name. Therefore, we take L ⊂ N and treat L as
names, distinct from the names appearing in source Base terms.

The semantic function EX
[
Γ ` e : t

]
∈ DX [t] gives meaning to (the type derivation of) a

potentially open expression e, where DX [t] along with auxiliary domains is defined as follows.
(When writing semantic functions, we shall show only the expression rather than its entire
type derivation, and often elide Γ and the type annotations to avoid clutter.)

DX [t] = EnvX → L → TX
[
t
]

EnvX = N � TX
[
t
]

where A� B is a finite map from A to B. If ρ is such a map, ρ[k→v] is its extension, ρ | 6=k

is its restriction (removing the association for k) and dom ρ is its domain; ∅ is the empty
map. We write modify ρ k u the modification of the element at key k by an update function
u, that is: ρ[k→u ρ(k)].

The semantic function MX

[
e : t

]
∈ TX

[
t
]

gives meaning to programs (i.e. to type
derivations of closed expressions):

MX

[
e
]

= EX
[
e
]
∅ []

The semantic rules are almost entirely standard: the extra L argument, written as `, is
the wrinkle. Here is the rule for abstraction:

ER
[
λx.e

]
ρ ` = λx.ER

[
e
]
ρ[x→x] (1::`)

For now, ` is not actually used, and might as well be absent. It will help soon, in §2.2. It will
also help to re-write the semantic rules in the form shown in Fig. 3, with the ‘composition’
and variable reference rules common to all semantics, and the semantic-specific strict mk
functions. For instance, mklamR takes the variable name and the denotation of a (generally
open) expression and constructs the denotation of a lambda-abstraction. The re-written
rules make it very clear that the denotation of, say, an abstraction is constructed from the
denotation of the abstraction body and the name of the abstracted variable.

The semantics of Base just given could rightly be called ‘extensional’. We also have
an ‘intensional’ Base semantics, notated by the superscript S, which maps an expression to
its symbolic form (a string, for example). Here TS

[
t
]

is always a string and the functions
mklamS etc. build strings (see Fig.3(d)). S is a trivially compositional, bona fide denotational
semantics, and even mentioned as such by [Mos90]. Usually it is quite useless – but not here.

2.2. Semantics of Codec. The semantics MX
Y [−] and EXY

[
−
]

of Codec is an extension of
a semantics of Base. There are now two indices: the subscript Y notates the semantics (R or
S) of the generator, whereas the superscript X labels the semantics used for the generated
code. (For a two-level language, Y being R is the most useful variant; we often leave this
implicit and drop Y.) The semantic domain of t code is (for now; it will be extended when
we come to let- and let-rec-insertion):

T X
[
t code

]
= DX [t]

A t code value represents a potentially open (think of generating function bodies) Base
expression e of type t. Its meaning is, therefore, EX [e]: the meaning the Base semantics X
gives to it.

Since Codec is an extension of Base, its semantics EXY
[
−
]

is an extension of EY
[
−
]

with
the rules for the meaning of constant expressions of type t code, such as the following rules
for generation of an integer literal, abstraction, application and let-expression. Generating

6 OLEG KISELYOV AND JEREMY YALLOP

(a) composition rules

EX
[
i
]

= mkintX i

EX
[
e1 + e2

]
= mkaddX EX

[
e1
]
EX
[
e2
]

EX
[
x
]

= mkvar x

EX
[
λx.e

]
= mklamX x EX

[
e
]

EX
[
e1 e2

]
= mkappX EX

[
e1
]
EX
[
e2
]

EX
[
let x = e1 in e2

]
= mkletX x EX

[
e1
]
EX
[
e2
]

(b) semantics of variable reference (generic)

mkvar x = λρ`.ρ(x)

(c) mk functions for the R semantics

mkintR i = λρ`.i

mkaddR d1 d2 = λρ`.(d1 ρ (1 :: `)) + (d2 ρ (2 :: `))

mklamR v d = λρ`.λx.d ρ[v→x] (1 :: `)

mkappR d1 d2 = λρ`.(d1 ρ (1 :: `)) (d2 ρ (2 :: `))

mkletR v d1 d2 = λρ`.(λx.d2 ρ[v→x] (2 :: `)) (d1 ρ (1 :: `))

(d) mk functions for the S semantics

mkintS i = λρ`.printf”%d” i

mkaddS d1 d2 = λρ`.printf”(%s+%s)” (d1 ρ (1 :: `)) (d2 ρ (2 :: `))

mklamS v d = λρ`.printf”(λ%s. %s)” v (d ρ[v→v] (1 :: `))

mkappS d1 d2 = λρ`.printf”(%s %s)” (d1 ρ (1 :: `)) (d2 ρ (2 :: `))

mkletS v d1 d2 = λρ`.printf”(let %s=%s in %s)” v

(d1 ρ (1 :: `)) (d2 ρ[v→v] (2 :: `))

Figure 3: Semantics of Base

addition, comparison, if-expression is similar. As far as variable references are concerned,
EXY
[
x
]

= EY
[
x
]

= mkvar x.

EXY
[
int i

]
ρ` = mkintX i

EXY
[
λx.e

]
ρ` = mklamX ` (EXY

[
e
]
ρ[x→ mkvar `] (1 :: `))

EXY
[
e1 @ e2

]
ρ` = mkappX (EXY

[
e1
]
ρ (1 :: l)) (EXY

[
e2
]
ρ (2 :: l))

EXY
[
clet e1 e2

]
ρ` = mkletX ` (EXY

[
e1
]
ρ (1 :: l)) ((EXY

[
e2
]
ρ (2 :: l)) (mkvar `))

When we generate an abstraction or a let-expression, the current ` acts as the fresh name
for the (to be) bound variable. Recall that the function mklam (Fig.3) takes a variable name
and the denotation for the abstraction body and gives the denotation for the abstraction.
Thus the role of `, the only non-standard aspect of the Base semantics, is to serve as a
deterministic name generator: the fresh name to be used in an expression is the path from
the root of the Böhm tree.

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 7

If we use the R semantics for the generated code (that is, choose X to be R) we see that
MR

R

[
ct1] is exactly MR

[
t1
]

(which is the integer 3), MR
R

[
csq
]

and MR

[
sq
]

both mean the

squaring function, and MR
R

[
cgib5

]
and MR

[
gib5

]
both mean the function that takes two

arguments x and y and returns the sum of 5 copies of y and 3 copies of x.
If we use the S semantics,MS

R[ct1] andMS [t1] still coincide (both mean the string 1+2).
MS

R[csq] and MS [sq] are generally different but α-equivalent lambda-expression strings.
Whereas MS [gib5] is the string of the gib5 code (potentially α-converted), MS

R[cgib5] is the
string

λx.λy. (((y + x) + y) + (y + x)) + ((y + x) + y)

It is an ‘optimized’ version of gib5, in the sense that the loop is unrolled; however, it contains
several instances of code duplication. Avoiding this code duplication is where let-insertion
comes in.

3. Let-insertion

To support let-insertion, we add to Codec two more forms: let locus l in e and genlet l em e.
The former, like the ordinary let, binds the so-called locus variable l in e. In the expression
genlet l em e, l is a locus variable (previously bound by let locus), em is a so-called memo
key (for now, an int expression) and e is a t code expression (t is a Base type). Roughly, e
generates the right-hand-side of the let-binding, l tells where to insert it, and the memo key
instructs which e are to be shared. We describe the genlet arguments in more detail after
the example, the slightly adjusted cgib5:

clgib5 := λx.λy. let locus l in

let rec loop n =

if n=0 then x else if n=1 then y else

genlet l (n−1) (loop (n−1)) + genlet l (n−2) (loop (n−2))
in loop 5

To a first approximation, one may think of genlet l em e as generating let z=c in z where z is
fresh and c is the code produced by the expression e. Such ‘let-expansion’ is useless, however.
It becomes more useful when the binding let z=c in is actually placed somewhere ‘higher’ in
the overall generated code. The form let locus l marks that ‘higher’ place where the bindings
produced by genlet are to be placed. Since let-insertion is very common, different parts of
the generator may do their own let-insertions at different places; the locus variable l is to
connect genlet with its corresponding let locus. Thus intuitively, genlet l em e will insert the
let z=c in at the place marked by let locus l and return the code of the bound variable z
(which is distinct from any other variables in the code).

Placing let-bindings ‘higher’ in the code is useful because they may be shared. The
memo key defines the equivalence classes: expressions with the same memo key are to be
shared. Therefore, if genlet l em e finds that there is already a let-binding produced by an
earlier genlet with the same l and the memo key, genlet l em e returns the code of the earlier
bound variable.

Using the semantics of these operations, explained below, we can see that whereas
MR

R

[
clgib5

]
remains the same as MR

[
gib5

]
, MS

R

[
clgib5

]
is the string

8 OLEG KISELYOV AND JEREMY YALLOP

λx.λy. let z = y in let u = x in

let v = z + u in let w = v + z in

let x6 = w + v in x6 + w

which is indeed an optimized version of gib5, without either loops or duplication.

3.1. Semantics of let-insertion. The key point was that the binding introduced by
genlet l em e is not yet placed; its placement will be decided only later, upon seeing the
corresponding let locus. For now, the genlet’s binding is ‘floating’ – we say ‘virtual’. To
accommodate virtual bindings we extend the semantics domain of t code: it is now a tuple,
whose first component is the earlier semantic domain of code values (§2.2), and whose second
component is the virtual bindings. Formally, the semantic domain is:

T X
[
t code

]
= DX [t]× (L� VX)

VX = (K ×K)Set× (K� BX)

BX = N ×DX [t]×NSet
Virtual bindings are indexed by the locus where they will be actually inserted. Fur-

thermore, virtual bindings with the same locus l and the same memo key k belong to the
same equivalence class. We take the locus to be an element of L and introduce the set K
of memo keys. All in all, virtual bindings is a finite map L � VX , where VX describes
virtual bindings with the same locus. If ν is such a map, we take ν(l) = ∅ if l 6∈ dom(ν).
Further thought, considering genlet l 2 (int 3 + genlet l 1 (int 1 + int 2)), shows that virtual
bindings have to be (partially) ordered. (We shall see an example soon.) Thus the elements
of VX are tuples 〈R, b〉 where R is a preorder on K and b is a finite map K� BX . Here,
BX describes one equivalence class of virtual bindings: a tuple 〈n, d, n〉 where n is the name
to bind, d is the (EX

[
−
]

denotation of the) expression to which n will be bound to, and n is
the set of names: names equivalent to n.

The earlier semantic rules for EXY
[
−
]

dealing with code generation have to be amended

to account for the extended semantic domain: EXY
[
int i

]
produces the empty virtual binding,

and the other rules propagate the virtual bindings of their subexpressions, merging as needed:

EXY
[
int i

]
ρ` = 〈mkintX i, ∅〉

EXY
[
λx.e

]
ρ` = 〈mklamX ` d, ν〉 where

〈d, ν〉 = EXY
[
e
]
ρ[x→ 〈mkvar `,∅〉] (1 :: `)

EXY
[
e1 @ e2

]
ρ` = 〈mkappX d1 d2, merge ν1 ν2〉 where

〈d1, ν1〉 = EXY
[
e1
]
ρ (1 :: l)

〈d2, ν2〉 = EXY
[
e2
]
ρ (2 :: l)

The operation merge for virtual bindings is described later.
As we said earlier, genlet l em e generates a fresh name to which the code produced by

e will eventually be bound; that fresh name is accompanied by the new virtual binding of
that name to the result of e. Here, e is a t code expression: the generator of the expression
to bind. It itself may be accompanied by virtual bindings. The new binding added by
genlet l em e may in general depend upon those bindings, and hence has to be added as
‘greater’ in the preorder R. (In contrast, em is an int rather than an int code expression, and

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 9

so its denotation EXY
[
em
]
ρ (1 :: `), written as k below, is (when Y is R) just an integer: in

general, an element of K.)

EXY
[
genlet l em e

]
ρ` = 〈mkvar `, modify ν ρ(l) (addb k 〈`, db〉) 〉 where

k = EXY
[
em
]
ρ (1 :: `)

〈db, ν〉 = EXY
[
e
]
ρ (2 :: `)

(If em or e diverge, so does genlet l em e.)
The semantic function addb k 〈n, d〉 v adds a new virtual binding of n with d to the

equivalence class k of the virtual bindings v ∈ VX with the same locus. Recall that the
virtual bindings v is a pair, of preorder R and the set of equivalence classes b, indexed by
the memo key. There are two cases to consider: if b already includes the equivalence class
for k, we add n to that class (and disregard the right-hand-side d since we already have an
equivalent one). Otherwise, we add to b the new equivalence class for k containing just the
binding of n to d, and update the preorder R so that k becomes the ‘latest’.

addb : K → (N ×DX [t])→ VX → VX

addb k 〈n, d〉 〈R, b〉 =

〈R, b[k→〈n′, d′, n′ ∪ {n}〉]〉

if b(k) = 〈n′, d′, n′〉

〈R ∪ {(k, k)} ∪ {〈k′, k〉 | k′ ∈ domR}, b[k→〈n, d,∅〉]〉

if k 6∈ dom b
The form let locus l in e converts the virtual bindings for the locus l produced by e into

real let-bindings. To a first approximation, the conversion can be understood as turning the
sequence of virtual bindings into nested let-expressions. We should mind the dependency
among the bindings and nest the let-expressions in the ‘right’ order.

EXY
[
let locus l in e

]
ρ` = 〈bind(ordered ν(`)) d, ν |6=`〉 where

〈d, ν〉 = EXY
[
e
]
ρ[l→ `] (1 :: `)

The semantic function ordered : VX → BXSeq converts 〈R, b〉 to a sequence of bindings BX
in an order consistent with R. The semantic function bind converts a sequence of bindings
to nested let-expressions.

bind[〈n1, d1, n1〉, 〈n2, d2, n2〉, . . .] d =
mkletX n1 d1 (substn1 n1(mkletX n2 d2 (substn2 n2(. . . d))))

Recall, the semantic function mklet (see Fig.3) builds the denotation of let x=e in e’ from
the variable name x, EX [e] and EX [e′]. In a virtual binding 〈n, d, n〉, the set n contains the
variables other than n in the same equivalence class with it. They are all substituted with n:

substnn d = λρ`.d ρ[(n′→n | n′ ∈ n)] `
The semantics function merge ν1 ν2 mentioned earlier merges the virtual bindings ν1 and

ν2, by using addb to add one-by-one the virtual bindings of ν2 to ν1, in an order consistent
with the R preorder of ν2.

An example featuring code duplication and nesting should show how everything fits
together. As a warm-up, a generator without genlet:

let locus l in

let x = (int 6 + int 7) in

((x + int 20) ∗ (x + int 30)) / int 100

10 OLEG KISELYOV AND JEREMY YALLOP

has the meaning in the MS
R

[
−
]

semantics as a string

(((6 + 7) + 20) ∗ ((6 + 7) + 30)) / 100

with evidently duplicate code. We can eliminate the duplication by putting let-expressions
into the generated code, using genlet:

1 let locus l in

2 let x = genlet l 1

3 (int 6 + int 7) in

4 (genlet l 2 (x + int 20)

5 ∗
6 genlet l 3 (x + int 30))

7 / int 100

The three genlet expressions are each in their own equivalence class and hence pass distinct
memo keys as their second arguments. (Such usage can be automated – in fact, it has been,
in MetaOCaml.) The code is typeset so that each notable expression is on its own line
for easy reference. Furthermore, we write `i for the Böhm tree location (an element of L)
corresponding to line i.

The denotation is computed as follows. Let ρ0 be the initial environment and ρ = ρ0[l→
`1]. We also assume mkmul and mkdiv functions similar to mkadd.

EX
[
(int 6 + int 7)

]
ρ`3 = 〈d3, ∅〉 where d3 = mkaddX (mkintX 6) (mkintX 7)

EX
[
genlet l 1 (int 6 + int 7)

]
ρ`2 = 〈mkvarX `2, {`1 → v2}〉 where

v2 = addb 1〈`2, d3〉∅ = 〈{(1, 1)}, {1→ 〈`2, d3,∅〉}〉

This was the denotation of the expression the variable x is bound to. The variable is then
used twice, on lines 4 and 6. In the following we take ρ1 to be ρ extended with the binding
for x.

EX
[
genlet l 2 (x + int 20)

]
ρ1`4 = 〈mkvarX `4, {`1 → v4}〉 where

d4 = mkaddX (mkvarX `2) (mkintX 20)

v4 = addb 2 〈`4, d4〉 v2 = 〈{(2, 2), (1, 1), (1, 2)}, {1→ 〈`2, d3,∅〉, 2→ 〈`4, d4,∅〉}〉
EX
[
genlet l 3 (x + int 30)

]
ρ1`6 = 〈mkvarX `6, {`1 → v6}〉 where

d6 = mkaddX (mkvarX `2) (mkintX 30)

v6 = addb 3 〈`6, d6〉 v2 = 〈{(3, 3), (1, 1), (1, 3)}, {1→ 〈`2, d3,∅〉, 3→ 〈`6, d6,∅〉}〉

When computing the denotation for the product expression, we have to merge the virtual
bindings v4 and v6

EX
[
. . . ∗ . . .

]
ρ1`5 = 〈mkmulX (mkvarX `4) (mkvarX `6), {`1 → v5}〉 where

v5 = 〈{(3, 3), (2, 2), (1, 1), (1, 3), (1, 2), (2, 3)},
{1→ 〈`2, d3,∅〉, 2→ 〈`4, d4,∅〉, 3→ 〈`6, d6,∅〉}〉

The merged virtual bindings propagate to the denotation of the division expression, and
converted to real let-bindings by let-locus. The whole expression thus has the denotation

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 11

EX
[
let locus l in . . .

]
ρo`1 = 〈

mkletX `2 (mkaddX (mkintX 6) (mkintX 7)) (

mkletX `4 (mkaddX (mkvarX `2) (mkintX 20)) (

mkletX `6 (mkaddX (mkvarX `2) (mkintX 30)) (

mkdivX (mkmulX (mkvarX `4) (mkvarX `6)) (mkintX 100)))), ∅〉

The interface for genlet described above differs from our previous proposal [YK19] in
that here we combine memoization and let-insertion. Although both memoization and
let-insertion are usually implemented in terms of effects, we have used no effects at all.

If let locus in clgib5 is positioned above λy. . . ., so called scope-extrusion occurs, resulting
in the generated code with have unbound variables (as we can verify in our semantics). It is
the subject of ongoing work to develop a type system to statically prevent such problems.

3.2. Generating (mutually) recursive definitions. It turns out that genletrec for gen-
erating (mutually) recursive definitions presented by [YK19] is a minor variant of the above
genlet, with almost the same semantics. The syntax is the same: genletrec l em e for request-
ing the binding (and obtaining the name of the to-be-bound variable) and let rec locus l in e
for actually generating let-rec statements at that locus.

Here is the example: specializing the Ackermann function challenge by Neil Jones. The
ack2 below is the two-argument Ackermann function ack partially applied to two:

ack2 :=

let rec ack = λm.λn.

if m=0 then n+1 else

if n=0 then ack (m−1) 1 else

ack (m−1) (ack m (n−1))
in ack 2

Below is the generator of ack2, matching ack2 in form.

cack2 :=

let rec locus l in

let rec ack = λm.λ n.

if m=0 then n+ (int 1) else

if (n = int 0)

(genletrec l (m−1) (ack (m−1)) @ int 1)

(genletrec l (m−1) (ack (m−1)) @ (genletrec l m (ack m) @ (n−int 1)))
in genletrec l 2 (ack 2)

Here genletrec is needed not just to obtain optimal code; without genletrec we get no code
at all: divergence. Using the semantics below, MS

R

[
cack2

]
gives the following code

let rec x = λu. if u = 0 then y 1 else y (x (u − 1))

and y = λv. if v = 0 then z 1 else z (y (v − 1))

and z = λw. w + 1 in x

Semantically, genletrec is also close to genlet: both return the name of a to-be-bound
variable, accompanied by a virtual binding. Whereas for genlet l em m the binding associates

12 OLEG KISELYOV AND JEREMY YALLOP

the name to the expression produced by e (the generated code), for genletrec l em e the virtual
binding associates the name to e itself (one may say, unevaluated generator expression).
Thus genletrec is even lazier, introducing even more virtual bindings. Formally, we extend
BX to

B′X = N × (DX [t] + T X
[
t code

]
)×NSet

where A + B is to be read as a disjoint union (with tags inl and inr) with a separately
added ⊥. The left summand DX [t] is inherited from BX : the meaning of the code for the
right-hand-side of the binding. The right summand T X

[
t code

]
is (the approximation of)

the code for the right-hand-side. The T X
[
t code

]
definition hence becomes recursive and

has to be understood as the solution to the domain equation. Then

EXY
[
genletrec l em e

]
ρ` = 〈mkvar `, ∅[l→addb k 〈`, inr EXY

[
e
]
ρ (2 :: `)〉∅]〉 where

l = ρ(l)

k = EXY
[
em
]
ρ (1 :: `)

Virtual bindings now contain yet to be evaluated generator expressions for the right-
hand-side of bindings. To generate the let-rec-statement, we have to evaluate them – which
may create more virtual bindings, which have to be merged and again evaluated (the
evaluation may also diverge). This complex process of evaluation is called canonicalization,
and performed by the semantic function canon ν l which takes virtual bindings and the locus
l and returns updated bindings ν ′ such that ν ′(l) are all canonical: each B′X is actually BX .
The function is the least fixpoint of the following recursive equation.

canon ν l =

ν if ν(l) are all canonical

canon (merge ν[l→〈R, b′〉] ν ′′) l where

〈R, b〉 = ν(l)

〈n, inr d′, n〉 = b(k), k ∈ dom(b)

〈d, ν ′′〉 = d′

b′ = b[k→〈n, inl d, n〉]
That is, among the bindings ν(l) with the same locus l we pick an equivalence class with
a non-canonical virtual binding 〈n, inr d′, n〉. If such a class does not exist, we are done.
Let k be the memo key of that class. If d′ is ⊥, so is the whole canon ν l. If not, it is a
pair, containing (the meaning of) the code d for the right-hand-side of the binding, plus its
accompanying virtual bindings ν ′′. We update the class k so it now contains the canonical
binding 〈n, inl d, n〉 and merge the result with ν ′′. It may happen that ν ′′ contains a
non-canonical binding for the same locus l and the same memo key k. In fact, this happens
in the cack2 example above: evaluating ack 2 produces virtual bindings that contain ack 2
again. The operation merge folds such bindings, with the already canonical inl d used as the
right-hand-side for the ν ′′(l)(k) binding – thus canonicalization may eventually terminate.

The form let rec locus l in e is semantically almost the same as let locus l in e, differing
only in the extra step of canonicalization of the virtual bindings produced by e. After
canonicalization, the virtual bindings are converted into real bindings in the same way as for
let locus l in e (only we produce one letrec-expression rather than a nest of let-expressions,
and therefore do not bother with ordered.)

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 13

4. MetaOCaml Implementation

Formal semantics is not the end, but the means; it is developed to be used. One application,
the subject of future work, is reasoning about generating programs and making sure the
generated code is not only well-formed and well-typed but also intended. Another application,
the subject of the present paper, is to clarify edge cases, and attempt to minimize them once
exposed. The formal development has already proven useful: it has improved our previous
design for generating mutually recursive definitions [YK19], which led to the straightforward
implementation in the current (N111) version of MetaOCaml [Kis14]. We now briefly
describe the implemented interface.

The let-insertion interface in MetaOCaml is as follows:

type locus

val locus global : locus

val genlet : ?name:string → ?locus:locus → α code → α code

val with locus : (locus → ω code) → ω code

type locus rec

val mkgenlet : ?name:string → locus rec → (κ→κ→bool) →
((κ → (α→β) code) → (κ → (α→β) code))

val with locus rec : (locus rec → ω code) → ω code

Here genlet is a version of genlet l em e described earlier, for the case of all memo keys being
distinct. The first optional argument of the MetaOCaml genlet is the hint for the variable
name to generate (useful if one wishes to see variable names in the generated code other
than t 34 and the like.) Locus is the second argument: if omitted, it defaults to locus global,
which is the implicit locus at the very beginning of the program. The current interface (and
also the implementation) thus subsumes the locus-less genlet of the previous MetaOCaml
version.

The type locus rec and the operations mkgenlet and with locus rec deal with potentially
mutually recursive memoizing let-insertion. In the earlier cack2 we have seen that the
memoization key occurs also in the expression to bind, as an argument to some function.
Such a pattern seems common, and mkgenlet interface is built around it. Furthermore,
memo keys are no longer integers; therefore, the user has to supply the key comparison
function κ→κ→bool. Again, it is better to see an example – the same Ackermann function
specialization example, but written this time in MetaOCaml (the example is part of the
MetaOCaml test suite).

let sack m =

with locus rec @@ fun l →
let g = mkgenlet l (=) in

let rec loop m =

if m = 0 then .<fun n → n + 1>. else

.<fun n → if n = 0 then .˜(g loop (m−1)) 1
else .˜(g loop (m−1)) (.˜(g loop m) (n−1))>.

in g loop m

14 OLEG KISELYOV AND JEREMY YALLOP

The interface is designed so that we could blindly put g before every recursive call, and
obtained the desired generator. The generated code is identical to that for cack2 shown
earlier.

The major difference of MetaOCaml let-insertion is that it never produces ill-scoped
code (that is, code with a scope extrusion). In MetaOCaml, let(rec) is actually inserted
either at the place of the explicit let locus, or at the binding that dominates all free variables
of the bound expression, whichever has the narrowest scope.

5. Related Work

It was recognized early on [Bon92, LD94] that one can use control effects (either direct
or realized via CPS) to answer the compositionality challenge of the ordinary, well-nested
let-insertion. [KKS11] give a comprehensive formal treatment. Unfortunately, neither the
standard CPS nor the well-understood shift operator are of any help with let-insertion
that does not follow the stack discipline and crosses already-generated bindings. This
problem was discussed in [KKS15], which proposed a very complicated transformation for
hygienic let-insertion across bindings, whose correctness was only conjectured. The theory
of code movement across already-generated bindings was later developed in [KKS16], using
operational semantics; it did not include let-insertion however.

Semantics for multi-stage languages have from the very earliest works [TBS98] generally
been given operationally; our denotational presentation is unusual in this respect. In contrast,
earlier work on two-level languages used a similar style to ours: [NN92] give a denotational
semantics in which the meta-language semantics is parameterized by the semantics of the
base language. (However, that work did not investigate let-insertion.)

Generating (mutually) recursive bindings has not previously been formally considered
at all, to our knowledge.

6. Conclusions

We have developed an executable denotational semantics for let(rec) insertion. The next step
is to develop a type system that prevents scope extrusion. Our semantics, for the first time,
lets us reason about the code with the generated let-statements, and we plan to demonstrate
this facility on standard interesting examples (e.g. from [KKS11, YK19, KKS16]).

Acknowledgments

We are grateful to the anonymous reviewers for many very helpful suggestions, which greatly
improved the presentation. We thank Yukiyoshi Kameyama for hospitality. This work was
partially supported by JSPS KAKENHI Grant Number 18H03218.

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 15

References

[Bon92] Anders Bondorf. Improving binding times without explicit CPS-conversion. In Proceedings of the
1992 ACM Conference on LISP and Functional Programming, LFP ’92, pages 1–10, New York,
NY, USA, 1992. ACM.

[Kis14] Oleg Kiselyov. The design and implementation of BER MetaOCaml. In Michael Codish and Eijiro
Sumii, editors, Functional and Logic Programming, volume 8475 of Lecture Notes in Computer
Science, pages 86–102. Springer International Publishing, 2014.

[Kis17] Oleg Kiselyov. Higher-order programming is an effect, 2017. HOPE Workshop at ICFP 2017.
[KKS11] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Shifting the stage: Staging with

delimited control. Journal of Functional Programming, 21(6):617–662, November 2011.
[KKS15] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Combinators for impure yet hygienic

code generation. Science of Computer Programming, 112 (part 2):120–144, November 2015.
[KKS16] Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. Refined environment classifiers - type- and

scope-safe code generation with mutable cells. In Atsushi Igarashi, editor, Programming Languages
and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016,
Proceedings, volume 10017 of Lecture Notes in Computer Science, pages 271–291, 2016.

[KMS21] Oleg Kiselyov, Shin-Cheng Mu, and Amr Sabry. Not by equations alone: Reasoning with extensible
effects. Journal of Functional Programming, 31:e2, 2021.

[KS16] Oleg Kiselyov and K. C. Sivaramakrishnan. Eff directly in OCaml. In Kenichi Asai and Mark R.
Shinwell, editors, Proceedings ML Family Workshop / OCaml Users and Developers workshops,
ML/OCAML 2016, Nara, Japan, September 22-23, 2016, volume 285 of EPTCS, pages 23–58, 2016.

[LD94] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Proceedings of the
1994 ACM Conference on LISP and Functional Programming, LFP ’94, pages 227–238, New York,
1994. ACM.

[Mos90] Peter D. Mosses. Denotational semantics. In J. van Leewen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, chapter 11, pages 577–631. The MIT
Press, New York, NY, 1990.

[NN92] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages. Cambridge University
Press, Cambridge, 1992.

[ORP16] Georg Ofenbeck, Tiark Rompf, and Markus Püschel. RandIR: differential testing for embedded
compilers. In Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016,
pages 21–30. ACM, October 30 - November 4 2016.

[SK01] Eijiro Sumii and Naoki Kobayashi. A hybrid approach to online and offline partial evaluation.
Higher-Order and Symbolic Computation, 14(2–3):101–142, September 2001.

[TBS98] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming: Axiomatization
and type safety. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors, Automata,
Languages and Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July
13-17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer Science, pages 918–929.
Springer, 1998.

[YK19] Jeremy Yallop and Oleg Kiselyov. Generating mutually recursive definitions. In Proceedings of the
2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2019,
pages 75–81, New York, NY, USA, 2019. ACM.

Appendix A. Base and Codec, executable

The base calculus can be represented as an OCaml signature. Calculus expressions of type
α are represented as OCaml values of type α repr. The mutually recursive mletrec takes
a collection of clauses indexed by idx; the first argument to mletrec indicates the number
of clauses. We gave mletrec a general type, with polymorphic α. In all practical cases, α
should be a function type and (α→β) repr should start with a lambda. The form letrec is
an instance of the general mletrec.

The R and S semantics of the calculus are then implementations of the signature. Using
OCaml to express the denotational semantics was argued in [KS16, §3.1.4].

16 OLEG KISELYOV AND JEREMY YALLOP

type α repr

val lam : (α repr → β repr) → (α→β) repr
val let : α repr → (α repr →β repr) → β repr

val (/) : (α→β) repr → (α repr → β repr) (∗ application ∗)
val if : bool repr → α repr → α repr → α repr

type idx = int

val mletrec : idx →
((idx → α repr) → (idx → α repr)) →
((idx → α repr) → ω repr) → ω repr

val letrec : ((α→β) repr → α repr → β repr) →
((α→β) repr → ω repr) → ω repr

val int : int → int repr

val bool : bool → bool repr

val succ : int repr → int repr

val (+) : int repr → int repr → int repr

val (−) : int repr → int repr → int repr

val (∗) : int repr → int repr → int repr

val (=.) : int repr → int repr → bool repr

Figure 4: Base calculus represented in OCaml: its syntax as OCaml signature

LET (REC) INSERTION WITHOUT EFFECTS, LIGHTS OR MAGIC 17

type α cd (∗ the type of code values ∗)

val clam : (α cd repr → β cd repr) → (α→β) cd repr

val clet : α cd repr → (α cd repr → β cd repr) → β cd repr

val int : int → int cd repr

val bool : bool → bool cd repr

val csucc : int cd repr → int cd repr

val (+) : int cd repr → int cd repr → int cd repr

val (−) : int cd repr → int cd repr → int cd repr

val (∗) : int cd repr → int cd repr → int cd repr

val (=) : int cd repr → int cd repr → bool cd repr

val (/) : (α → β) cd repr → α cd repr → β cd repr

val if : bool cd repr → α cd repr → α cd repr → α cd repr

type memo key = int repr

type locus t

val genlet locus : (locus t → ω cd repr) → ω cd repr

val genlet : locus t → memo key → α cd repr → α cd repr

val genletrec locus : (locus t → ω cd repr) → ω cd repr

val genletrec : locus t → memo key → (α→β) cd repr → (α→β) cd repr

Figure 5: Codec calculus represented in OCaml: its syntax as OCaml signature. The calculus
includes the whole Base calculus; only the extension is shown.

Figure 5 presents the Codec calculus in the form of an OCaml signature. To be precise,
the figure shows only the extension of Base, with the type of code values and combinators to
produce them. A code value is annotated only with the type of the expression it generates,
with no further classifiers (at present).

The combinator clam builds a lambda-expression given the open expression for the
function body. Let-insertion combinators are the simple, local let-insertion clet demon-
strated in §1; genlet for non-recursive definitions, described in §3 and genletrec for mutually
recursive definitions, §3.2. The locus argument of the latter two is a variable bound by the
corresponding genlet locus, not an expression; therefore its type is just locus t rather than
locus t repr.

This work is licensed under the Creative Commons Attribution License. To view a copy of this

license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative

Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse

2, 10777 Berlin, Germany

	1. Introduction
	2. Semantics of Code Generation
	2.1. Semantics of Base
	2.2. Semantics of Codec

	3. Let-insertion
	3.1. Semantics of let-insertion
	3.2. Generating (mutually) recursive definitions

	4. MetaOCaml Implementation
	5. Related Work
	6. Conclusions
	Acknowledgments
	References
	Appendix A. Base and Codec, executable

