
Generating C: Heterogeneous Metaprogramming
System Description

Oleg Kiselyov

aTohoku University, Sendai, Japan

Abstract

Heterogeneous metaprogramming systems use a higher-level host language to
generate code in a lower-level object language. Their appeal is taking advan-
tage of the module system, higher-order functions, data types, type system
and verification tools of the host language to quicker produce high-performant
lower-level code with some correctness guarantees.

We present two heterogeneous metaprogramming systems whose host lan-
guage is OCaml and object language is C. The first relies on offshoring : treating
a subset of (MetaOCaml-generated) OCaml as a different notation for (a subset
of) C. The second embeds C in OCaml in tagless-final style. The systems have
been used in several projects, including the generation of C supersets OpenCL
and OpenMP.

Generating C with some correctness guarantees is far less trivial than it
may appear, with pitfalls abound: e.g., local variables may only be introduced
in statement context; mutable variables are not first-class. Maintenance has
challenges of its own, e.g., extensibility. On many examples, we expound the
pitfalls we have come across in our experience, and describe the design and
implementation to address them.

Keywords: heterogeneous metaprogramming, code generation, tagless-final

1. Introduction

Generating C is an odd problem: at first glance, it is trivial and nothing to
write about. Beyond simple applications, however, complexity, traps, hazards
snowball. One may as well write code directly in C to start with, or use a
compiler.

Neither of these two choices may be palatable, especially in high-performance
computing (HPC). For one, high-performant code is often voluminous and ob-

Email address: oleg@okmij.org (Oleg Kiselyov)

Preprint submitted to Elsevier August 29, 2023

scure – and hence hard to write directly by hand.1 It also has to be re-adjusted
for each new architecture and processor configuration. Hopes that an optimizing
compiler save us such trouble were dashed two decades ago: see Cohen et al. [1]
for exposition and many references. Furthermore, compiler-generated C code
typically can only be executed within the specific run-time environment and
cannot be freely linked with other C code.

The alternative to writing performant low-level code by hand or to relying
on a general-purpose compiler is code generation. Being domain-specific, a gen-
erator may employ very profitable but not widely-applicable expert knowledge
and optimizations. Such code generation is being increasingly used in HPC,
becoming dominant in some areas: ATLAS [2] for BLAS (Basic Linear Alge-
bra Subroutines), FFTW [3] and SPIRAL [4] for FFT and related transforms,
Halide [5] for image filtering, Firedrake [6] for partial differential equations using
finite element method.

The present paper describes two orthogonal approaches for generating C
using OCaml, with some guarantees and convenience.2 We take OCaml as a
representative high-level language for writing generators, and C as a represen-
tative low-level language. The approaches extend to other languages (e.g., [8]
for LLVM IR; we have also tried WASM). The systems presented in this system
description paper are programming language systems, akin to a domain-specific
compiler: The user feeds an OCaml source code file and obtains an executable,
which, when run, produces C code. The result can be used as regular C li-
brary code; it may also be compiled and dynamically linked into the generator,
thus effecting run-time specialization. One may also enter (the fragments of)
the generator code at the interactive OCaml top-level, evaluate them, see the
generated code and test it. We extensively use this interactive mode in the
exposition.

The first approach is offshoring, initially proposed in Eckhardt et al. [9]:
generating simple OCaml code with certain correctness guarantees (namely,
well-formed, well-typed, well-scoped) and then translating it to C, preserving
the guarantees. The second approach is embedding C in OCaml as typed combi-
nators, in tagless-final style [10, 11]. Both ensure the generated C code compiles
without errors: see §3.2 and §5.2 for the justification of these assurances. Both
explore the metaphor of a subset of OCaml as a notation for C.

1For an example, see the manually written high-performance BLAS code in https://

www.openblas.net/, e.g., dot-product https://github.com/xianyi/OpenBLAS/blob/develop/
kernel/x86_64/ddot.c and its kernel for a particular, already obsolete processor archi-
tecture https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot_microk_

sandy-2.c
2The present paper is loosely based on [7], published in the Proceedings of FLOPS 2022.

Not only the present paper is more than twice as long, the implementation has significantly
changed (prompted, in part, by writing and presenting the FLOPS paper) – although the user
interface remained the same. Particularly notable is a new approach to generating mutable
variables, removing all earlier restrictions (see §4.6), and the normalization of let-bindings (see
§4.2). We now generate C99, mixing variable declarations and statements. Tagless-final code
generation, which was hardly explained before, is covered in full.

2

https://www.openblas.net/
https://www.openblas.net/
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot.c
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot.c
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot_microk_sandy-2.c
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot_microk_sandy-2.c

Offshoring is a particularly attractive idea – and has been implemented twice
before, see §6. These earlier implementations were initial proofs-of-concept,
with many limitations, pitfalls and challenges, which may explain why they
have become unmaintainable and are no longer available. In contrast, the cur-
rent implementation of offshoring in BER MetaOCaml is fully developed and
mature. It is done from scratch, in complete re-design and re-thinking of the
earlier implementations to clearly expose and address the challenges and ensure
maintainability. To stress, not only the current implementation has no code in
common with the earlier prototypes, but the very design and the underlying
algorithms are also different. The implementation has been publicly available
since 2018 (but privately, quite earlier) and used in several Master and Bachelor
projects, among others, for generating performant OpenCL (GPGPU) [12] and
OpenMP [13] code and for robot control code. The present paper is the first
complete presentation of the fully developed offshoring.

1.1. Contributions

1. Explicate the challenges in generating low-level (C) code, many of which
have only become clear from our experience;

2. Present the implementations of the two approaches, which are freely avail-
able and have been used in practice, see §7;

3. Describe how the two systems are designed to address or mitigate the
challenges. The design and many algorithms (dealing with local §4.2 and
mutable §4.6, §5.3 variables, extensibility §4.3, etc.) are novel and pre-
sented here for the first time.

In short, this paper is the first presentation of offshoring that has come of
age, and of the matching tagless-final approach.

1.2. Challenges

There are two sorts of challenges we have encountered in designing and using
assured C code generation: technical and engineering.

Technically, the metaphor ‘simple OCaml as a notation for C’ does not
actually hold: see, for example, control operators such as break, continue and
goto, as well as the general for and do-while loops, which have no analogue in
OCaml (§4.4). Whereas local variables in OCaml may be introduced in any
context, C does not permit variable declarations in expressions. The problem
is particularly acute for expressions in conditional branches or loop conditions:
see §4.2. More subtly, and hence insidiously, is the difference between variables
in C and variables of reference types in OCaml – which can easily lead to the
generation of type-correct but ill-behaving code (§4.6). These problems make
the embedding of C difficult, and all but doom offshoring – it may seem.

Eventually, the problems have been overcome. One of the key ideas rever-
berating throughout the paper is to keep the eyes on the goal: expressing an
algorithm in an efficient-to-execute way – which can be done in a subset of C. For

3

an example, see the manually written high-performance C code in OpenBLAS,3

which is syntactically spartan. After all, C, as many languages, is redundant,
with many ways of expressing the same algorithm. Some expressions may be
more elegant or idiomatic – but we only care about efficiency. Covering all of
C and generating every its construct is hence explicitly not the goal. A subset
suffices, which is easier to put in correspondence with a subset of OCaml.

It goes without saying that the covered subset of C must still be useful.
Ours has proven useful, and used in several projects (§7). It is also the least
restrictive offshoring implementation (see §6).

Among the engineering challenges is the unanticipated need for type infer-
ence (§4.1), and, mainly, extensibility, §4.3. If a system is not easy to extend,
it falls into disuse. We should be able to support architecture-specific types
of C and its extensions (SIMD, CUDA, OpenMP, etc.) and generate code that
interacts with external libraries.

The challenges, first encountered in offshoring, also arise in tagless-final.
Fortunately, the lessons learned in offshoring carry forward and help: see §5.3.

1.3. Structure of the Paper

The next section reminds the straightforward C generation, and the reasons
one may quickly move beyond it. §3 describes the offshoring and §4 the chal-
lenges and how they have been addressed. The tagless-final embedding of C is
presented in §5. Related work is discussed in §6. Section 7 briefly evaluates the
usefulness and adequacy of the approaches.

The obvious question is how the two approaches presented in the paper
compare; when to use one over the other. It is a rather nuanced question to
answer, although some aspects are clear: e.g., the tagless-final approach can be
realized in OCaml as is, without any extensions, and is overall more portable;
quasi-quotes in MetaOCaml are syntactically more pleasing. We revisit the
comparison question in §7.1, having expounded the approaches.

MetaOCaml (which includes offshoring) is available from Opam,4 among
other sources (the current version is N114). The complete code for all exam-
ples (including extra examples) and the tagless-final embedding are available at
http://okmij.org/ftp/meta-programming/tutorial/genc.html

2. Prelude: Direct C Generation

What springs to mind when talking about code generation is directly emit-
ting the code as strings. It also quickly becomes apparent why some abstractions
and guarantees are desirable – as this section illustrates.

A notable example of directly emitting C code as strings is ATLAS [2]: a
generator of automatically tuned linear algebra routines, which “is often the
first or even only optimized BLAS implementation available on new systems

3https://www.openblas.net/
4https://opam.ocaml.org/

4

http://okmij.org/ftp/meta-programming/tutorial/genc.html
https://www.openblas.net/
https://opam.ocaml.org/

for (j=0; j < nu; j++) {
for (i=0; i < mu; i++) {
if (Asg1stC && !k)
fprintf(fpout, ”%s %s%d %d = %s%d ∗ %s%d;\n”, spc, rC, i, j, rA, i, rB, j);

else fprintf(fpout, ”%s %s%d %d += %s%d ∗ %s%d;\n”, spc, rC, i, j, rA, i, rB, j);
opfetch(fpout, spc, nfetch, rA, rB, pA, pB, mu, nu, offA, offB,

lda, ldb, mulA, mulB, rowA, rowB, &ia, &ib);
} }

Figure 1: A snippet of ATLAS: generation of the inner loop body for matrix-matrix multipli-
cation

and is a large improvement over the generic BLAS”.5 Fig. 1 shows a typical
snippet of ATLAS code, itself written in C and using fprintf to generate C code.
The variable spc is whitespace for indentation, and the variables rC, i, and j are
combined to name identifiers declared elsewhere. Nothing guarantees that these
identifiers are indeed all declared and the declarations are in scope – nor that
the result is syntactically well-formed. Even if a fprintf output is syntactically
correct, the presence of loops and branching in the generator makes it hard to
see that the overall generated code will be too. It is also not at all obvious that
we are indeed generating matrix multiplication code.

Incidentally, the implementor of ATLAS himself is quite frustrated:

“As you have seen, this note and the protocols it describes have
plenty of room for improvement. Now, as the end-user of this func-
tion, you may have a naturally strong and negative reaction to these
crude mechanisms, tempting you to send messages decrying my lack
of humanity, decency, and legal parentage to the atlas or developer
mailing lists. . . . So, the proper bitch format involves

• First, thanking me for spending time in hell getting things to
their present crude state

• Then, supplying your constructive ideas”

(R. Clint Whaley: User contribution to ATLAS. Conclusion. 2012-
07-10. math-atlas.sourceforge.net/devel/atlas_contrib/)

In his retrospective [14], Sheard summarized such lessons as: “The lack of
internal structure [corresponding to the target language structure] is so serious
that my advice to programmers is unequivocal: No serious meta-programmer
should ever consider representing programs as strings.”[14, §5].

What comes to mind next is a sort of an abstract syntax tree for C (several
of which are available just in OCaml, see §6 for details). The generator then
produces the tree data structure, which is pretty-printed into C code at the end.
The pretty-printing ensures the result syntactically well-formed – and nothing

5https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software

5

math-atlas.sourceforge.net/devel/atlas_contrib/
https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software

more than that. One would like, however, further guarantees: at the very least,
that the generated code compiles without errors and contains no problematic
expressions, like a[i++] = b[i++].

The importance of having the generated code compile without errors may
be hard to see. Ofenbeck et al. [15] sound a warning:

While we were able to resolve the performance issues, we introduced
new bugs . . . [that] would manifest in errors such as:6

forward reference extends over definition of value x1620

[error] val x1343 = x1232(x1123, x1124, x1180, x1181,
x1223, x1224, x1223, x1229, x1216, x1120, x1122, x1121)

Note that variables are indexed in ascending order starting at zero,
meaning that a large piece of code is processed before we hit this
error. The root cause of bugs such as this one often proved to be
very simple but heavily obfuscated in the code it manifested in.

We strive to avoid such problems altogether: if the generator successfully fin-
ished, the produced code must be free from scoping and typing errors. This is
the subject of the rest of the paper.

3. Offshoring

As we have seen, emitting C code is better done not directly but through a
level of abstraction that provides some guarantees. The selection of guarantees
is an engineering decision, balancing against the ease of use and the implemen-
tation and maintenance effort.

One particularly attractive balance is offshoring [9]: treating a subset of
OCaml as if it were a (non-canonical) notation for C. For example, consider the
OCaml code for vector addition (a typical BLAS operation): the left column of
the table below.

let addv = fun n vout v1 v2 →
for i=0 to n−1 do

vout.(i) ← v1.(i) + v2.(i) done

void addv(int n, int∗ vout, int∗ v1, int∗ v2) {
for(int i=0; i≤n−1; i++)

vout[i] = v1[i] + v2[i]; }

It is rather easy to imagine the C code it corresponds to (the right column).
One may even argue [9] that OCaml’s addv is C’s addv, written in a different
but easily relatable way. (As we shall see in §5.1, the similarity of the two addv
pieces of code is not accidental.) Offshoring is the facility that realizes such
correspondence between a subset of OCaml and C (or other low-level language).
With offshoring, by generating OCaml we, in effect, generate C. Offshoring
hence turns homogeneous metaprogramming into heterogeneous.

6The generated code here is Scala.

6

The first premise of offshoring is the ability to convert well-typed OCaml
code into C code that surely compiles, without errors. Eckhardt et al. [9] for-
malized the (rather restricted, see §6) OCaml subset-to-C translation and proved
it type preserving; meaning preservation was not addressed. Bussone has for-
mally (in Coq) shown the meaning preservation of the offshoring translation, in
a yet unpublished work.7 Kiselyov [16] demonstrated the type- and meaning-
preservation of the translation between calculi representing subsets of OCaml
and C with mutable variables.

The second premise is the ability to produce OCaml with some correctness
guarantees. It is fulfilled by MetaOCaml [17, 18], which generates OCaml code
that surely compiles – meaning, i.a., it is well-typed and has no unbound vari-
ables. The type soundness is demonstrated in Calcagno et al. [19], and the
scope soundness is justified in [17]. We now illustrate how it is all put together,
continuing the vector addition example.8

Definition 1 (Generating C via offshoring). Generating C via offshoring
proceeds as:

1. implement the algorithm in OCaml

2. stage it – add staging annotations – and generate (possibly specialized)
OCaml code

(a) test the generated code

3. convert the generated OCaml code to C, saving it into a file

4. (a) compile and link the generated C code as ordinary C library code
(b) compile the generated C code and (dynamically) link into an OCaml

program, via an FFI such as [20].

Definition 1 presents the overall flow of offshoring. In our example, the
first step has already been accomplished, by the OCaml addv above. The next
step is to turn it into a generator of OCaml vector addition, with the help of
MetaOCaml’s staging annotations – specifically, so-called brackets .< and >.:

let addv staged =
.<fun n vout v1 v2 → for i=0 to n−1 do vout.(i) ← v1.(i) + v2.(i) done>.

Brackets enclose the code to generate and in this sense are analogous to string
quotation marks ‘”’. However, brackets are not opaque: the enclosed code must
be well-formed, moreover, well-typed OCaml code.

The result of evaluating addv staged is

val addv staged : (int → int array → int array → int array → unit) code =
.<fun n 1 vout 2 v1 3 v2 4 →

for i 5 = 0 to n 1 − 1 do
Array.set vout 2 i 5 (Array.get v1 3 i 5 + Array.get v2 4 i 5)

done>.

7Grègoire Bussone, private communication
8The complete code with tests and further examples is in offshore_simple.ml of the

accompanying code.

7

offshore_simple.ml

It is a so-called code value: a value of the type t code that represents the
generated OCaml expression, where t is its type. Code values can be printed. In
our case, the printout shows the original addv after desugaring and renaming of
all identifiers. (The generated code therefore has no variable name shadowing.)
Such code value is the outcome of Step 2 of offshoring. Passing addv staged to
the function offshore to c, to be explained in detail later, accomplishes Step 3
and produces a .c file with the code9

void addv(int const n 1,int ∗ const vout 2,int ∗ const v1 3,int ∗ const v2 4){
for (int i 5 = 0; i 5 < n 1; i 5 += 1)
(vout 2[i 5]) = (v1 3[i 5]) + (v2 4[i 5]);

}

which is the addv C code shown earlier. It is an ordinary C code and can be
linked with any C or other program that needs vector addition. It can also be
called from OCaml, via an FFI such as [20].

3.1. Real-life Example: Generating Optimized BLAS

Real-life use of offshoring is more interesting – because of the ability to
specialize or otherwise optimize the generated code before offshoring. For ex-
ample, suppose that the size of vectors to add is known in advance, and is small
enough to unroll the loop in addv. The generator of unrolled code cannot be
obtained from addv merely by placing brackets; quite a few other modifications
are required. It helps to generalize addv first:10

let addvg n vout v1 v2 = iota n |> List.iter (fun i → vout.(i) ← v1.(i) + v2.(i))

where iota n generates a list of integers 0 through n−1 and List.iter performs a
given action on each element of the list. We may stage it similarly to addv staged,
by enclosing everything in brackets:

let addvg staged full =
.<fun n vout v1 v2 → iota n |> List.iter (fun i → vout.(i) ← v1.(i) + v2.(i))>.

Passing this code value to offshore to c, however, results in an exception: this
code is outside of domain of offshoring. It is not hard to see why: the argument
of List.iter is a first-class function, which cannot be simply represented in C.
If the array size n is known at the generation time, a different placement of
brackets becomes possible:

let addvg staged n =
.<fun vout v1 v2 → .˜(iota n |> iter seq (fun i → .<vout.(i) ← v1.(i) + v2.(i)>.))>.

where

let iter seq f = List.map f |> seqs
let seqs : unit code list → unit code = fun l → reduce (fun x y → .<.˜x; .˜y>.) l

9We take care to put const modifiers: to clarify our intentions, to follow the current rec-
ommended C practices, and for reasons made clear in §4.6.

10The left-associative infix operator |> of low precedence is the inverse application. The
related right-associative infix operator @@ of low precedence, appearing later, is application:
x + 1 |> f is the same as f @@ x + 1 and is the same as f (x + 1) but avoids the parentheses.

8

Here, besides brackets we used the other staging annotation, .˜ (pronounced
‘escape’) that denotes a hole in the code template (bracketed expression), to be
filled by the code produced by the escaped expression. The function seqs builds
code from a sequence of code values. Evaluating addvg staged 4 gives the fully
unrolled vector addition:

val addvg staged4 : (int array → int array → int array → unit) code =
.<fun vout 11 v1 12 v2 13 →

Array.set vout 11 0 ((Array.get v1 12 0) + (Array.get v2 13 0));
Array.set vout 11 1 ((Array.get v1 12 1) + (Array.get v2 13 1));
Array.set vout 11 2 ((Array.get v1 12 2) + (Array.get v2 13 2));
Array.set vout 11 3 ((Array.get v1 12 3) + (Array.get v2 13 3))>.

MetaOCaml offers the facility to compile and run this code, so we can test it
on sample 4-element arrays and compare the result with addv or addvg. Testing
(see Step 2(a) of Defn. 1) is easier to do on the OCaml version of the code, before
converting to C: the MetaOCaml run facility does not require a separately run
compilation step and can be scripted in OCaml. Also, an out-of-bound indexing
into an array results in an exception in OCaml rather than undefined behavior.

Once we are satisfied that the generated OCaml code works, we pass it to
offshore to c obtaining:

void addv4(int ∗ const vout 11,int ∗ const v1 12,int ∗ const v2 13){
(vout 11[0]) = (v1 12[0]) + (v2 13[0]);
(vout 11[1]) = (v1 12[1]) + (v2 13[1]);
(vout 11[2]) = (v1 12[2]) + (v2 13[2]);
(vout 11[3]) = (v1 12[3]) + (v2 13[3]);
}

It is unsettling that addv can be easily staged and offshored to produce a for
loop but not an unrolled loop; addvg is the other way around. By generalizing
addvg a bit more:11

let addv abs vout v1 v2 = zip with add v1 v2 |> iter assign vout

we not only express vector addition clearly but also, by appropriately instan-
tiating iter assign, zip with and add combinators, may generate from the same
expression a variety of programs: unrolled, not unrolled, or partially unrolled
for-loop – and apply strip mining and scalar promotion optimizations. Let us
illustrate it. (The complete code is in the file addv.ml accompanying the pa-
per; for comparison, tf_addv.ml re-implements the same example using the
tagless-final approach, §5, re-using the infrastructure.)

First, we adopt an abstract view of vectors – so-called ‘pull vectors’ pioneered
by APL [22] – as a function from a finite domain of indices to the set of elements:

type ι lmad = {lwb: ι option; upe: ι; step: int}
type (ι,α) vec = Vec of ι lmad ∗ (ι → α)

The type ι is the type of the index, and α is the type of the elements. Here
ι lmad is the description of the index domain: so-called linear memory access

11See Sections 4 and 5 of [21] for detailed explanation.

9

addv.ml
tf_addv.ml

descriptor [23]. The field lwb is the (inclusive) lower bound (None means the
default, 0), upe is the exclusive upper bound, step is the stride.

The operation zip with f v1 v2 – applying a binary operation f to vectors v1
and v2 elementwise – may be generically defined as

let zip with : (α → β → γ) → (ι,α) vec → (ι,β) vec → (ι,γ) vec =
fun tf (Vec (n1,f1)) (Vec (n2,f2)) →
assert(n1 == n2);
Vec (n1, fun i → tf (f1 i) (f2 i))

The lmad descriptors of the two vectors must be identical: the assert on the
second line checks that, at the generation time.

We treat assignment also abstractly: a value of type α may be assigned to
a location of type β if there exists a function of the type

type (β,α,ω) assign = β → α → ω

where ω represents the assignment (action), required to be a monoid: actions
are composable. For example, a location to accept an assignment of the value
of type α may be represented as α ref or as α → unit. The assignment function
(α→unit,α,unit) assign in the latter case is the function application (@@). A
particular case of assignment is the assignment of vectors:

type (ι,β,α,ω) iter assign = (ι, β) vec → (ι, α) vec → ω

With thus developed infrastructure, the general vector addition is expressed as
mentioned above:

let addv abs (add:α→α→α) (iter assign : (ι,β,α,ω) iter assign) :
(ι,β) vec → (ι,α) vec → (ι,α) vec → ω =
fun vout v1 v2 → zip with add v1 v2 |> iter assign vout

This general addv can be instantiated to add vectors, or to generate vector
addition code. We are interested in the latter, and so chose the value domain to
be float code, which represents expressions evaluating to a floating-point num-
ber. The addition operation

let addfc : float code → float code → float code = fun x y → .< .˜x +. .˜y >.

constructs the summation code. A particular instantiation of addv for code
generation (assuming the length of arrays is not statically known) is

let addv gen (iter assign : (int code,float code → unit code,float code,unit code) iter assign) :
(int → float array → float array → float array → unit) code =
.<fun n vout v1 v2 →
.˜(let lmad = {lwb=None;upe= .<n>.;step=1} in

addv abs add:addfc iter assign
(Vec (lmad, vec set .<vout>.)) (Vec (lmad, vec get .<v1>.)) (Vec (lmad, vec get .<v2>.)))

>.

where

let vec get : α array code → int code → α code = fun v i → .< Array.get .˜v .˜i >.
let vec set : α array code → int code → α code → unit code = fun v i x → .< Array.set .˜v .˜i .˜x >.

(One may easily design a more general instantiation of addv accommodating the
possible static knowledge of the array length, or even of some arrays: see [21]
for details.)

10

If the index ι is int – that is, describes values known at the generation time –
ι lmad may be enumerated: converted to a list of the denoted indices:12

let iota : int lmad → int list = fun {lwb; upe; step} →
let rec loop i = if i ≥ upe then [] else i :: loop (i+step) in
loop (Option.value lwb ˜default:0)

On the other hand, int code lmad cannot be converted to the list of statically
(i.e., generation-time) known values. It still may be enumerated, but at the
time of running the generated code:

let iota dyn : int code lmad → (int code → unit code) → unit code =
fun {lwb; upe; step} body →
.<OffshoringIR.forloop .˜(Option.value lwb ˜default:.<0>.)

˜step ˜upe:.˜upe @@ fun i → .˜(body .<i>.)>.

Here OffshoringIR.forloop is a for-loop with a possibly non-unit stride (and the
exclusive upper-bound) provided by the offshoring library, and explained in more
detail in §4.4. Corresponding to the two lmad-enumerators are two combinators
that lift element assignment to vector assignment:

let iter assign sta : (β,α,unit code) assign → (int, β, α, unit code) iter assign =
fun assign vout v →
zip with assign vout v |> function Vec (lmad,f) → iota lmad |> List.map f |> seqs

let iter assign dyn : (β,α,unit code) assign → (int code, β, α, unit code) iter assign =
fun assign vout v →
zip with assign vout v |> function Vec (lmad,f) → iota dyn lmad f

Using the latter, the expression addv gen (iter assign dyn (@@)) generates:

val addv c : (int → float array → float array → float array → unit) code = .<
fun n 1 vout 2 v1 3 v2 4 →

(OffshoringIR.forloop 0 ˜upe:n 1 ˜step:1)
(fun i 5 → Array.set vout 2 i 5 ((Array.get v1 3 i 5) +. (Array.get v2 4 i 5)))>.

Applying Offshoring.offshore to c ˜name:”addv” to the above OCaml code pro-
duces

void addv(int const n 1,double ∗ const vout 2,double ∗ const v1 3, double ∗ const v2 4){
for (int i 5 = 0; i 5 < n 1; i 5 += 1)
(vout 2[i 5]) = (v1 3[i 5]) + (v2 4[i 5]);

}

This is the addv we started §3 with and saw several times already.
There are other implementations of iter assign. One is based on strip-mining:

turning an N ×1 column vector into a matrix of N/s rows and s columns, where
s is the strip size. (N does not have to be evenly divisible by s, so we may have
a remainder of a vector.)

val iter assign strip (strip:int) (assign: (β,α,unit code) assign)
(iter assign inner: (int, β,α, unit code) iter assign) : (int code, β, α, unit code) iter assign

12˜default:l is the so-called named-argument: the feature of OCaml letting us name argu-
ments, for clarity. Named arguments can be given in any order. All in all, Option.value lwb
˜default:0 or Option.value ˜default:0 lwb means the value of lwb, or 0 if it is None.

11

(See the complete code in addv.ml for the implementation.) It behaves like
iter assign dyn assign for the remainder, and like iter assign dyn iter assign inner
to assign rows of the matrix. The index type for the inner assignment is int
rather than int code: the length of the rows, which is strip, is statically known.
Using iter assign sta for the row assigner:

let addv c1 = addv gen (iter assign strip 4 (@@) (iter assign sta (@@)))

produces

val addv c1 : (int → float array → float array → float array → unit) code = .<
fun n 6 vout 7 v1 8 v2 9 →
let t 11 = n 6 land (−4) in
();
(OffshoringIR.forloop 0 ˜upe:t 11 ˜step:4)
(fun i 13 →

Array.set vout 7 (i 13 + 0)
((Array.get v1 8 (i 13 + 0)) +. (Array.get v2 9 (i 13 + 0)));

Array.set vout 7 (i 13 + 1)
((Array.get v1 8 (i 13 + 1)) +. (Array.get v2 9 (i 13 + 1)));

Array.set vout 7 (i 13 + 2)
((Array.get v1 8 (i 13 + 2)) +. (Array.get v2 9 (i 13 + 2)));

Array.set vout 7 (i 13 + 3)
((Array.get v1 8 (i 13 + 3)) +. (Array.get v2 9 (i 13 + 3))));

(OffshoringIR.forloop t 11 ˜upe:n 6 ˜step:1)
(fun i 12 → Array.set vout 7 i 12 ((Array.get v1 8 i 12) +. (Array.get v2 9 i 12)))>.

which we can test and then offshore, using the same Offshoring.offshore to c ˜name:”addv”
operation:

void addv(int const n 6,double ∗ const vout 7,double ∗ const v1 8, double ∗ const v2 9){
int const t 11 = n 6 & −4;
for (int i 13 = 0; i 13 < t 11; i 13 += 4){
(vout 7[i 13 + 0]) = (v1 8[i 13 + 0]) + (v2 9[i 13 + 0]);
(vout 7[i 13 + 1]) = (v1 8[i 13 + 1]) + (v2 9[i 13 + 1]);
(vout 7[i 13 + 2]) = (v1 8[i 13 + 2]) + (v2 9[i 13 + 2]);
(vout 7[i 13 + 3]) = (v1 8[i 13 + 3]) + (v2 9[i 13 + 3]);
}
for (int i 12 = t 11; i 12 < n 6; i 12 += 1)
(vout 7[i 12]) = (v1 8[i 12]) + (v2 9[i 12]);

}

Compared to the simple addv earlier, the main loop is split in two (not counting
the epilogue loop over the remainder): the outer one over strips, and the inner
over the elements within a strip. The inner loop is then fully unrolled – which
is how strip mining is often explained [1].

A row of a stripped matrix is a (int, float code) vec: a vector of known
length whose elements are code fragments (float-producing expressions). The
next optimization – scalar promotion – is to let-bind those pieces of code, and
produce a vector whose elements (still of the type float code) are the names of
those let-bound variables. Such a let-binding of vector elements is performed
by

val scalar bind : (int, α code) vec → ((int, α code) vec → ω code) → ω code

which is a ‘lifted’ version of (and is expressed in terms of) the let-binding com-
binator

12

addv.ml

val letl : α code → (α code → ω code) → ω code

provided by MetaOCaml. Using the scalar-promoted version of iter assign sta
(which promotes the input vector before the assignment):

let iter assign sta promote : (β,α,unit code) assign → (int, β, α, unit code) iter assign =
fun assign vout v → scalar bind v @@ fun v’ → iter assign sta assign vout v’

as

let addv c2 = addv gen (iter assign strip 4 (@@) (iter assign sta promote (@@)))

produces

val addv c2 : (int → float array → float array → float array → unit) code = .<
fun n 14 vout 15 v1 16 v2 17 →

let t 19 = n 14 land (−4) in
();
(OffshoringIR.forloop 0 ˜upe:t 19 ˜step:4)
(fun i 21 →

let t 22 = (Array.get v1 16 (i 21 + 0)) +. (Array.get v2 17 (i 21 + 0)) in
let t 23 = (Array.get v1 16 (i 21 + 1)) +. (Array.get v2 17 (i 21 + 1)) in
let t 24 = (Array.get v1 16 (i 21 + 2)) +. (Array.get v2 17 (i 21 + 2)) in
let t 25 = (Array.get v1 16 (i 21 + 3)) +. (Array.get v2 17 (i 21 + 3)) in
Array.set vout 15 (i 21 + 0) t 22;
Array.set vout 15 (i 21 + 1) t 23;
Array.set vout 15 (i 21 + 2) t 24;
Array.set vout 15 (i 21 + 3) t 25);

(OffshoringIR.forloop t 19 ˜upe:n 14 ˜step:1)
(fun i 20 → Array.set vout 15 i 20 ((Array.get v1 16 i 20) +. (Array.get v2 17 i 20)))>.

The let-bindings – the effect of scalar promotion – are clearly visible. Applying
the same Offshoring.offshore to c ˜name:”addv” gives the following C code, with
the look and feel of the HPC BLAS:13

void addv(int const n 14,double ∗ const vout 15,double ∗ const v1 16, double ∗ const v2 17){
int const t 19 = n 14 & −4;
for (int i 21 = 0; i 21 < t 19; i 21 += 4){
double const t 22 = (v1 16[i 21 + 0]) + (v2 17[i 21 + 0]);
double const t 23 = (v1 16[i 21 + 1]) + (v2 17[i 21 + 1]);
double const t 24 = (v1 16[i 21 + 2]) + (v2 17[i 21 + 2]);
double const t 25 = (v1 16[i 21 + 3]) + (v2 17[i 21 + 3]);
(vout 15[i 21 + 0]) = t 22;
(vout 15[i 21 + 1]) = t 23;
(vout 15[i 21 + 2]) = t 24;
(vout 15[i 21 + 3]) = t 25;
}
for (int i 20 = t 19; i 20 < n 14; i 20 += 1)
(vout 15[i 20]) = (v1 16[i 20]) + (v2 17[i 20]);

}

13https://raw.githubusercontent.com/xianyi/OpenBLAS/develop/kernel/x86_64/

daxpy.c

13

https://raw.githubusercontent.com/xianyi/OpenBLAS/develop/kernel/x86_64/daxpy.c
https://raw.githubusercontent.com/xianyi/OpenBLAS/develop/kernel/x86_64/daxpy.c

3.2. Discussion

Thus, generating C is generating OCaml using brackets and escapes, and
then passing it to offshore to c to produce C code. MetaOCaml statically guar-
antees that the generated OCaml code is well-typed and well-scoped: see [19, 17],
as was already mentioned at the beginning of §3. The translation to C also has
been shown type-preserving (and, for a small subset with mutable variables and
pointer types, meaning-preserving) [9, 16]. Well-formedness of the resulting C
code is assured by first producing C AST and then pretty-printing it.

As we have seen for addvg staged full, offshoring applies only to a small
imperative subset of OCaml. Therefore, offshoring is much simpler than an
OCaml-to-C compiler, which must deal with the full language and support clo-
sures, tail recursion, GC, etc. None of this matters in offshoring, which hence
produces C code that does not need any special run-time. Albeit simple, the off-
shorable subset of OCaml has proven to be adequate for numeric and embedded
programming (see §7).

Although the offshorable subset is easy to define in theory (see [9]) it is hard
to express in types, especially in the extant OCaml type system. Therefore,
nothing actually prevents offshore to c from being applied to the code outside
the supported subset – in which case it throws an exception. It is not a sound-
ness problem: we still guarantee that the produced C code, if indeed successfully
produced, to be well-formed and well-typed. The problem is that the offshoring
exception is raised late, after the code to offshore has all been generated. Meta-
OCaml (OCaml, actually) supports location information, which could be used to
emit detailed error messages (not implemented in the current version however).
The best mitigation is to generate OCaml code not via brackets and escapes
directly but via further abstraction layers (combinators) such as iter assign in
§3.1 – with the OCaml type system enforcing the abstraction.

4. Challenges

As attractive the metaphor of OCaml as C is, upon close inspection it breaks
down, as the present section describes. Fortunately, it can eventually be held
together – by workarounds and the design of the library that implements, en-
forces and steers towards the workarounds. As our refrain goes, the goal is to
express an algorithm in efficient C code, not to generate idiomatic code and
every C construct. The lessons we have learned in addressing the challenges
carry over to the tagless-final approach: §5.3.

4.1. Type Inference

Looking closer at the OCaml addv code, §3, and the corresponding C code
one notices that the correspondence is not as straightforward as one may have
initially thought: the OCaml code mentions no types, whereas in C any decla-
ration, of arguments and local variables, must be accompanied by their types.
The need for type inference is an unpleasant surprise.

14

Fortunately, the MetaOCaml compiler is an extension of the OCaml compiler
and hence may use the OCaml type checker to infer types in the code to offshore.
The original implementation of offshoring [9] was hence integrated with the
OCaml type checker. Since the type checker notably changes in every release
of OCaml, the original offshoring almost immediately became unmaintainable
and was removed when porting MetaOCaml to OCaml 3.12, which introduced
especially many changes to the type checker.

The lesson was learned when resurrecting offshoring in BER MetaOCaml.
The new offshoring is disentangled as much as possible from the OCaml type
checker. The key ideas are two intermediary languages, rexp (Fig. 2) and Off-
shoringIR (Fig. 4). The former forms an abstraction barrier between internal
OCaml data structures (typedtree, below) and the rest of offshoring. In terms
of Defn. 1, Step 3 is hence split into four:

(i) type checking the generated OCaml code and obtaining the typedtree;

(ii) converting the typedtree to rexp;

(iii) converting the result to OffshoringIR;

(iv) and, finally, pretty-printing OffshoringIR as C code.

The latter two steps are to be explained in §4.2.
The function Runcode.typecheck code of MetaOCaml performs Step (i): type

checking the generated code. The result is the internal compiler data structure
typedtree: type-annotated abstract syntax tree. Defined in the 800+-line file
typing/typedtree.mli in OCaml distribution (as of OCaml 4.14.1), it is a
huge, partly mutable and abstract data structure. Some parts have to be ac-
cessed via an API, which constantly changes. The type representation, in a sep-
arate file (typing/types.mli, 700+ lines), is also a large, mutable and partly
abstract data structure, to be accessed via an unstable internal API. One has to
be aware of many complexities of the OCaml type system, such as potentially
recursive type aliases/abbreviations. There are several notions of type equal-
ity, and one has to know when to use which. Checking a type being int is not
a simple pattern-match but requires a sequence of obscure and undocumented
internal compiler function calls.

The language rexp, Figure 2, is a stable and easier to work with version
of typedtree representing the imperative subset of OCaml that is subject to
offshoring. It should be largely self-explanatory. We should point out the sub-
module OP that enumerates arithmetic, logical, array and reference operations,
common to OCaml, C and other languages. Many operations are indexed by
types: it generally does not matter for C, which uses overloading, but does
matter, say, for WASM.

Continuing the example of vector addition from §3, the rexp expression for
the body of addv staged, repeated here

val addv staged : (int → int array → int array → int array → unit) code =
.<fun n 1 vout 2 v1 3 v2 4 →

for i 5 = 0 to n 1 − 1 do
Array.set vout 2 i 5 (Array.get v1 3 i 5 + Array.get v2 4 i 5)

done>.

15

typing/typedtree.mli
typing/types.mli

type numtyp = I32 | I64 | F32 | F64 (∗ Numeric types ∗)
type typ = .. (∗ Extensible type ∗)
type typ +=
| TVoid (∗ No values of that type ∗)
| TNum of numtyp
| TBool
| TChar
| TArray1 of typ (∗ Usual array or Bigarray.Array1 ∗)
| TRef of typ
| TString

module OP : sig (∗ Operations ∗)
type t =
| ADD of numtyp | SUB of numtyp | MUL of numtyp | DIV of numtyp | MOD of numtyp
| . . .
| EQ of numtyp | NE of numtyp | LT of numtyp | GT of numtyp | LE of numtyp | GE of numtyp
| NEG of numtyp | NOT | BNOT of numtyp
| ASSIGN of typ | INCR of numtyp | DECR of numtyp
| CAST of {from: numtyp; onto: numtyp} | Assert
| DEREF of typ | REF of typ (∗ typ = type of content ∗)
| Array1 get of typ | Array1 set of typ (∗ typ = array element type ∗)
| Other of varname
val name : string → t

end

type varname = private string

type constant t = (∗ no constants of void type! ∗)
| Const num of numtyp ∗ string (∗ appropriately serialized ∗)
| Const bool of bool
| Const char of char
| Const string of string

type rexp =
| Const of constant t (∗ Constant/literal: int, bool,. . . ∗)
| Array of rexp list (∗ Immediate array ∗)
| LocalVar of varname ∗ typ (∗ Locally−bound variable ∗)
| KnownVar of OP.t (∗ defined in other modules/Stdlib ∗)
| FunCall of OP.t ∗ rexp list (∗ Calls only to known functions ∗)
| Let of {id: varname; ty: typ; bind: rexp; body: rexp}
| Cond of rexp ∗ rexp ∗ rexp (∗ Conditional expression ∗)
| If of rexp ∗ rexp ∗ rexp option (∗ branches: unit type ∗)
| Seq of rexp ∗ rexp
| For of {id: varname; ty:typ; lwb: rexp; upe: rexp; step: rexp; body: rexp}
| While of rexp ∗ rexp
| Unit (∗ empty statement ∗)

Figure 2: The intermediate language rexp: an easier to work with and stable version of
typedtree

16

is14

For {id = ”i 5”; ty = TNum I32;
lwb = Const (Const num (I32,”0”)); upe = LocalVar (”n 1”, TNum I32);
step = Const (Const num (I32,”1”));
body =
FunCall (OP.Array1 set (TNum I32),
[LocalVar (”vout 2”, TArray1 (TNum I32)); LocalVar (”i 5”, (TNum I32));
FunCall (OP.ADD I32,
[FunCall (OP.Array1 get (TNum I32),
[LocalVar (”v1 3”, TArray1 (TNum I32)); LocalVar (”i 5”, (TNum I32))]);
FunCall (OP.Array1 get (TNum I32),
[LocalVar (”v2 4”, TArray1 (TNum I32)); LocalVar (”i 5”, (TNum I32))])])])}

We see that in rexp, all identifier references and declarations are type-annotated,
which makes it easy to produce C declarations later on. The local identifier
names are all unique: courtesy of MetaOCaml. Therefore, no shadowing may
occur – and identifier declarations may safely be lifted to a wider scope, which
is sometimes necessary when emitting C, as described in §4.2.

The conversion from typedtree to rexp encapsulates all complexities of deal-
ing with internal compiler data structures. As they change, only this conver-
sion needs to be adjusted. The conversion is engineered to be an ordinary
library function, outside the OCaml compiler and using only what is exposed
in compiler-libs library.

Since rexp represents only an offshorable subset of typedtree, the conversion
is partial, raising an exception if the input is outside the supported subset
(e.g., contains higher-order functions, local function declarations, etc.) Besides
mapping OCaml types to typ, function names to OP.t and typedtree expressions
to rexp, the conversion desugars @@ and |> into ordinary function applications,
and turns let = e1 in e2 and let () = e1 in e2 into sequencing e1; e2. An if-
expression of OCaml is converted either into a Cond or If node of rexp depending
on the type inferred for it and recorded in typedtree. The result is If for the
conditional of type unit.

The for-loop of OCaml describes the iteration range by the smallest and
the largest indices. In contrast, the language rexp uses the exclusive upper
bound upe instead of the largest index. Since the index stride is always one in
for . . . to loop, upe is the largest index plus one. The translation makes such
adjustment – along with the optimization: if the maximal index in an OCaml
for-loop is e−1 (where e is some expression) as often is the case, then upe is
set to (the converted) e. The above code exhibits such an adjustment. The
language rexp has a provision for loops of non-unit stride, see §4.4.

Finally, the conversion uncurries function applications. As the result, ap-
plications like f () are translated to FunCall (OP.Other ”f”,[]) – that is, thunk
invocations passing no arguments; applications like f 1 () are out of scope of
offshoring. Although in OCaml the type unit is populated (by the value ()),
the conversion maps it to TVoid, with no constants of that type. Therefore,

14The upper bound of the OCaml for-loop, n 1-1, is rendered as upe = LocalVar (”n 1”, . . .)
in rexp. This adjustment is explained later in text.

17

OCaml’s () is mapped to a special rexp form Unit, to be treated as an empty C
block, as we see next.

4.2. Local Variables

However similar the subsets of OCaml and C may look in simple examples
(like addv in §3), there is a profound difference between them, which becomes
apparent as soon as we introduce local variables. OCaml is an expression lan-
guage. The let-form that introduces a local variable is an expression and may
appear in any expression context. To put it another way, whatever an expres-
sion, one may always introduce a local variable to name its sub-expression.
Figure 3 shows a few examples.

1 let x = f () in x + 1

2 let y = (let x = f () in x + 1) in y + 2

3 (if test () then let x = f () in x + 1 else 3) + 4

4 while let x = f () in x + 1 > 5 do h () done

Figure 3: Examples of variable abstraction (local variables) in OCaml

On the other hand, C is a statement-oriented language, with sharp distinc-
tion of expressions and statements. Binding forms are not expressions and may
not appear in expression context. (In original C, local variable bindings must be
gathered at the beginning of a statement block. C99 permits local variable dec-
larations be interspersed with statements.) Therefore, none of the examples in
Figure 3 are straightforward to render in C. The easiest is let x = f () in x + 1,
which, considered as a complete expression, can be offshored as the following C
function body (we elide the function header for clarity):

int const x = f(); return (x+1);

The x-binding has to be lifted out of the return expression. For Fig. 3(line 2),
we would have to write the following C code:

int const x = f(); int const y = x+1; return (y + 2);

Although the earlier let x = f () in x + 1 appears as a sub-expression in Fig. 3
line 2, its offshoring is now different. The code on lines 3–4 of Fig. 3 is the
most problematic: offshoring cannot leave the variable declarations where they
are since they are not allowed in C conditional expressions or test-expressions
in while-loops. We cannot lift them out either since their containing expression
may be executed zero or multiple times. The best we can do is a mutable-
variable conversion:

int x; return ((test () ? (x=f (), x + 1) : 3) + 4);

int x; while (x=f (), x + 1 > 5) h ();

18

Offshoring, hence, is more involved than it appeared, requiring a non-trivial
handling of variable binding. The language rexp from §4.1 – in essence, a (type-
annotated) abstract syntax of an imperative subset of OCaml – is still an expres-
sion language and cannot be easily mapped to C.15 Further transformation – or,
normalization – is needed, to lift or convert variable bindings and to distinguish
statements from expressions – which is the subject of the present section. The
result of the normalization is expressed in the language OffshoringIR: Figure 4.
Unlike rexp, it is a statement-oriented language, designed to be translatable to
C (or Fortran, LLVM, WASM, etc.) – in full, see Prop. 2, and easily.

OffshoringIR, Figure 4, is a typed, imperative language, distinguishing ex-
pressions exp and statements stmt and allowing variable bindings be associated
only with a statement. A statement with its bindings is called a block. A
complete function is represented by proc t: a block with argument declarations
args t and the return type.

As should be apparent from Fig. 4, expression exp has no bindings. One may
think of a statement stmt as a flow-chart element: an expression, branching, or
iteration. A statement may also be a sequence of blocks Seq (b1,b2), where b1
is not an Exp statement with empty bindings, and neither b1 nor b2 are the
empty (i.e., Unit) block. Each binding in a sequence of bindings represents an
association of a newly introduced local variable with its initializing expression
exp (to remind, the grammar of exp permits no embedded bindings). In addition,
a TVoid expression (an assignment or a function call) is also treated as a binding,
called pseudo-binding. Since proper bindings are also statements, a block overall
is a sequence of statements.16

To present the translation from rexp succinctly, we introduce a more concise
notation for OffshoringIR, Figure 5. For clarity, we elide KnownVar (used for
global variables), for-loops (analogous to while-loops) and shortcut-evaluation
expressions && and || (analogous to conditional expressions).17 We elide imme-
diate array expressions and limit function applications to binary applications.
All variables and bindings are treated as ordinary OCaml or const-annotated
C variables. Mutable variables, arising from bindings of the particular form
let x = ref e in . . . are discussed in §4.6. For now, we assume that such partic-
ular let-bindings are absent.

The translation from a rexp r to a block of OffshoringIR is written ⌈r⌉ and
presented in Fig. 7. It is clearly structurally recursive: has the form of a fold
over the (the relevant subset of) rexp. In other words, it has the form of a non-
standard evaluation of the rexp – reminding one of normalization-by-evaluation
[24]. The translation is partial because the semantic functions ϵ(b) and σ(b) are

15Strictly speaking, rexp cannot be fully mapped to C at all, since it includes non-offshorable
expressions like (while . . . do . . . done; 1) + 2

16The complicated grammar of OffshoringIR comes from the fact that a void-function call
in C may be adjoined to an expression using the comma operator, but an if- or loop- statement
may not.

17In rexp, as in Typedtree, such expressions are represented as ordinary function applications,
but of ‘functions’ with particular names.

19

type α seq (∗ Abstract sequence ∗)

type mutble = Mut | Cnst

type exp =
| Const of constant t (∗ Constant/literal: int, bool,. . . ∗)
| Array of exp list (∗ Immediate array ∗)
| LocalVar of varname (∗ Locally−bound variable ∗)
| MutVar of varname (∗ Reference to a mutable var ∗)
| GlobalVar of varname (∗ Global/library function,. . . ∗)
| FunCall of OP.t ∗ exp list
| Cond of exp ∗ exps ∗ exps (∗ Conditional expression ∗)
| And of exp ∗ exps (∗ shortcut eval: && ∗)
| Or of exp ∗ exps (∗ shortcut eval: || ∗)
and exps = exp list
and stmt =
| Exp of exp
| If of exp ∗ block ∗ block option
| While of exps ∗ block
| For of {id: varname; ty:typ; lwb: exp; upe: exp; step: exp; body: block}
| Seq of block ∗ block
and block =
| Unit
| Block of binding seq ∗ stmt
and binding = bv desc option ∗ exp
and bv desc = {id: varname; ty: typ; mut: mutble}

type args t = (varname ∗ typ) list
type proc t = args t ∗ typ ∗ block (∗ Complete procedure ∗)
val offshore : (module converters) → α code → proc t (∗ For the first argument, see §4.3 ∗)

type float32 = private float (∗ See §4.3 ∗)
val float32 of float : float → float32

(∗ For−loop with a step, like the for−loop in C: see §4.4 ∗)
val forloop : int → upe:int → step:int → (int → unit) → unit

Figure 4: The intermediate language (IR) of offshoring (defined in offshoringIR.mli). Types
typ and constants constant t are the same as those in Fig. 2.

Variables x, y, z
Constants c
Function names f
Expression e ::= x | c | f e e | cond e ē ē
Statement s ::= e | if e b b | while ē b | b; b
Block b ::= () | v̄ ▷ s
Binding v ::= (x, e) | e

Figure 5: A more concise notation for (a representative subset of) OffshoringIR. Here ū denotes
a sequence of u with the empty sequence · and concatenation +. In Binding, (x, e) represents
a proper binding, and just e pseudo-binding.

20

FV (x) = {x}
FV (c) = ∅

FV (f e1 e2) = FV (e1) ∪ FV (e2)

FV (cond e ē1 ē2) = FV (e) ∪ FV (ē1) ∪ FV (ē2)

FV (ē) = ∪e∈ēFV (e)

FV (if e b1 b2) = FV (e) ∪ FV (b1) ∪ FV (b2)

FV (while ē b) = FV (ē) ∪ FV (b)

FV (b1; b2) = FV (b1) ∪ FV (b2)

FV (()) = ∅
FV (v̄ ▷ s) = (FV (s)\BV (v̄)) ∪ FV (v̄)

FV (·) = ∅
FV (v̄ + e) = FV (e)\BV (v̄)

FV (v̄ + (x, e)) = FV (e)\BV (v̄)

BV (·) = ∅
BV (v̄ + (x, e)) = BV (v̄) ∪ {x}

BV (v̄ + e) = BV (v̄)

Figure 6: Sets of free and bound variables: FV (−) and BV (−)

partial. The former checks that a block has the form v̄ ▷ e – an expression e with
the associated bindings – and returns (v̄, e). The function is not defined for a
Unit block or blocks with if- or while statements. The partiality of ϵ(b) reflects
the fact that expressions like (while . . . do . . . done; 1) + 2 are not offshorable.
The semantic function σ(b) also verifies its block argument being of the form
v̄ ▷ e, and further, that all bindings in v̄ are pseudo-bindings. Such block is
then a sequence of expressions, which σ(b) returns. This function is hence
undefined when the block has proper variable bindings. It is used in the context
of a test-expression of a while loop or branches of a conditional expression:
contexts where proper bindings cannot be easily lifted out. We do not do the
mutable variable conversion at present and hence reject programs where it is
needed, since such programs are rare and better re-written. We may re-visit
this decision in the future.

The semantic function π(b1, b2) builds a sequence of blocks respecting the
invariant of Seq.

The translation is binding-preserving. To state this more formally, we intro-
duce BV (−) and FV (−) for sets of bound and free variables, defined in Fig. 6.
We call an rexp r locally closed if each LocalVar x in it occurs as a sub-expression
in the body of the Let expression that binds that x.

Proposition 1. If r is a locally closed rexp with unique variable names then
FV (⌈r⌉) is empty.

The proof is the simple observation that if Let(x,r,rb) includes LocalVar x in rb,
then x ∈ FV (⌈rb⌉) and x ̸∈ FV (⌈Let(x, r, rb)⌉). The proposition and its proof
imply that after the normalization all variable-use occurrences still refer to the
same bindings. All variable names remain unique.

The formalization and proof of the stronger, and more desirable property
of meaning preservation is out of scope. It may be ascertained by giving de-
notational semantics to rexp and OffshoringIR (i.e., writing an interpreter for

21

both languages) and showing the translation meaning-preserving. Here we only
remark that overall the translation is the re-association and ‘straightening-out’
of let-bindings, similar to the transformations in Sabry and Felleisen [25]. The
side-conditions of the transformations are satisfied from the fact that all vari-
able names are unique and hence their scopes can be extended without creating
conflicts.

The function offshore, Fig. 4, implements the sub-steps (i)-(iii) of §4.1: it
takes the closed code value produced by MetaOCaml, invokes the OCaml type
checker to infer types, converts the resulting typedtree to rexp and then nor-
malizes to OffshoringIR. (The function’s first argument, converters, is explained
in §4.3). It raises an exception if the input is outside the supported subset of
OCaml.

Continuing the example of vector addition from §3, the invocation offshore
(module DefaultConv) addv staged produces the following IR code:

([(”n 1”, TNum I32); (”vout 2”, TArray1 (TNum I32));
(”v1 3”, TArray1 (TNum I32)); (”v2 4”, TArray1 (TNum I32))],
TVoid,
Block (<empty>,
For {id = ”i 5”; ty = TNum I32;

lwb = Const (Const num (I32, ”0”)); upe = LocalVar ”n 1”;
step = Const (Const num (I32, ”1”));

body =
Block (<empty>,
Exp (FunCall (OP.Array1 set (TNum I32),

[LocalVar ”vout 2”; LocalVar ”i 5”;
FunCall (OP.ADD I32,
[FunCall (OP.Array1 get (TNum I32), [LocalVar ”v1 3”; LocalVar ”i 5”]);
FunCall (OP.Array1 get (TNum I32), [LocalVar ”v2 4”; LocalVar ”i 5”])])])))}))

Pretty-printing this OffshoringIR expression to C gives the code we have seen
in §3. As another example, the code from Fig. 3 (line 2) is transformed to

Block (
[(Some {id=”x 1”; ty=TNum I32; mut=Cnst}, FunCall(OP.Other ”f”,[])),
(Some {id=”y 2”; ty=TNum I32; mut=Cnst},

FunCall(OP.ADD I32,[LocalVar ”x 1”; Const (Const num (I32,”1”))]))
],
Exp (FunCall (OP.ADD I32, [LocalVar ”y 2”; Const (Const num (I32,”2”))])))

In either case, pretty-printing to C is straightforward. After all, OffshoringIR
has been designed with this goal in mind. The actual C pretty-printing is done
via an intermediary stage of mapping OffshoringIR to C AST.

Proposition 2. Each expression of OffshoringIR maps to a well-formed C pro-
gram fragment. In particular, every proc t expression maps to a well-formed C
procedure.

The proposition can be verified by examining the mapping to C AST in the
offshoring implementation. The proposition says nothing about type safety or
the absence of unbound variables.

One may just as easily pretty-print the IR to other low-level imperative
language, such as Fortran, LLVM IR, or WASM. Extensibility was another
design decision behind the IR.

22

⌈Const(c)⌉ = · ▷ c

⌈Unit⌉ = ()

⌈LocalVar(x)⌉ = · ▷ x

⌈FunCall(f, r1, r2)⌉ = v̄1+v̄2 ▷ f e1 e2 where
(v̄1, e1) = ϵ(⌈r1⌉)
(v̄2, e2) = ϵ(⌈r2⌉)

⌈Cond(r, rt, rf)⌉ = v̄ ▷ cond e σ(⌈rt⌉) σ(⌈rf⌉) where (v̄, e) = ϵ(⌈r⌉)
⌈If(r, rt, rf)⌉ = v̄ ▷ if e ⌈rt⌉ ⌈rf⌉ where (v̄, e) = ϵ(⌈r⌉)
⌈While(r, rb)⌉ = · ▷ while σ(⌈r⌉) ⌈rb⌉

⌈Let(x, r, rb)⌉ =
{
v̄▷e if (v̄, e) = ϵ(⌈r⌉), () = ⌈rb⌉
v̄+(x,e)+v̄b▷s if (v̄, e) = ϵ(⌈r⌉), v̄b ▷ s = ⌈rb⌉

⌈Seq(r1, r2)⌉ = π(⌈r1⌉, ⌈r2⌉)

Semantic functions

ϵ : b → v̄ × e

ϵ(v̄ ▷ s) = (v̄, e) if s = e (i.e., s is an expression)

ϵ(b) = ⊥ otherwise

σ : b → ē

σ(v̄ ▷ s) = ē+e′ if s = e′, v̄ = ē (all v̄ are pseudo-bindings)

σ(b) = ⊥ otherwise

π : b × b → b

π((), b) = b

π(b, ()) = b

π(v̄1 ▷ e, v̄2 ▷ s) = v̄1+e+v̄2 ▷ s all bindings in v̄1 are pseudo-bindings

π(b1, b2) = · ▷ b1; b2 otherwise

Figure 7: Normalization algorithm: translation ⌈−⌉ : rexp → b from rexp to OffshoringIR. To
remind, + is used to add an element to a sequence or to concatenate sequences.

23

4.3. Extensibility

From the very beginning of using offshoring it became clear that extensibility
is the must. We should be able to accommodate the ever increasing assortment
of integer and floating-point types of C as well as the vector types of various
SIMD extensions. The generated C code often needs to interact with external
libraries: therefore, we have to generate calls to library functions and deal
with their data types. OpenCL/CUDA and OpenMP bring further challenges:
generating pragmas, local and global annotations, and their own vector and
scalar data types. All these extensions in the target of offshoring have to be
representable in its source, i.e., OCaml. Looking back, every single project using
offshoring required some sort of extension.

The original offshoring [9] was not extensible at all. Furthermore, it was
part of the MetaOCaml compiler. Therefore, to make any extension – even to
add a new library function – one had to modify a large code file that was part of
(Meta)OCaml compiler. A mistake can crash the compiler or make it produce
wrong code. After making the change, the entire compiler has to be recompiled.
One may try to imagine what programming in C would be like if introducing a
new external function required changing and then recompiling gcc.

The current implementation of offshoring is designed for extensibility. Not
only it is now an ordinary library, which can be changed and recompiled in-
dependently of the MetaOCaml compiler. It is designed so that no recom-
pilation should be needed. We illustrate using the example of offshoring the
code to print an array of 32-bit floating-point numbers into a file. The exam-
ple shows off calls to external library functions (FILE i/o of C) with their own
data types (the pointer to the FILE structure), as well as dealing with 32-bit
floating-point numbers with no equivalent in OCaml (OCaml float corresponds
to double in C). The example is designed to answer some of the most frequently
asked questions about offshoring. The complete code accompanies the paper:
offshore_ext.ml. Fig. 8 shows the salient parts.

The first puzzle is how to generate OCaml code that represents calls to
external C functions and uses their data types – the functions that are not
generally callable from OCaml as they are. The answer is to define a module
to represent that external library: lines 1-10 of Fig. 8. For the purpose of
offshoring, all the library data types can be abstract and all functions dummy:
we only need their signatures.18 The type float32 (line 6) is the type of short
floats, introduced by the OffshoringIR interface as a private alias to OCaml’s
float and translated to TNum F32 of OffshoringIR.19

With the module File stub in scope we may generate code. Lines 12-19
show the result: the (well-typed) MetaOCaml code value. Passing it to offshore
from Fig. 4 ends in an exception however: “unknown type: file”. Indeed, the

18If one plans to run the generated code as OCaml as well, e.g., for testing, one needs the
working implementation of File stub. The complete code of the running example contains such
an implementation, emulating C FILE i/o using OCaml i/o.

19The original OCaml float is translated to TNum F64.

24

offshore_ext.ml

offshoring library knows nothing about this data type. We need to tell it.
First, we add to the IR types the new base type TFile (meant to correspond
to FILE of C). As OffshoringIR.typ is an extensible data type, its extension is
as simple as line 21. Defining the correspondence between the OCaml type
File stub.file and the just introduced TFile is the job of the converters module,
whose implementation DefaultConv is provided by default. Lines 23-32 extend
this module: line 25 maps File stub.file to TRef TFile (so that File stub.fopen
matches fopen in the C standard library). Lines 28-29 specify that the names in
the File stub module (namespace) are to be understood as global identifiers. The
offshoring library knows about the comparison operators = and ̸= – but only
when they are applied to numeric types. Our example compares pointers, and
we have to tell the library (line 30) how to do that: for example, use NEQ (which
can be defined as C macro). With thus set-up module Conv, offshoring succeeds
and produces an IR program, which can then be straightforwardly pretty-printed
to C (offshore to c combines the IR translation and pretty-printing). The result
is shown at the end of Fig. 8.

The grouping of C library functions and types as an OCaml module, in the
manner of File stub, has an unexpected benefit: C gets a module system, which
it never had.

4.4. Control Structures: Loops and Exits

One place where C and OCaml differ significantly is control structures. Al-
though while loop has the same syntax and meaning in both languages, do-while
has no analogue in OCaml. The for loop is present in both, but rather restricted
in OCaml: the loop variable must be an integer, stepping only by one, up or
down. Since loops with an arbitrary stride are common in HPC, the offshoring
library offers a workaround. It defines the function:

let forloop : int → upe:int → step:int → (int → unit) → unit =
fun lwb ˜upe ˜step body →
let rec loop i = if i ≥ upe then () else (body i; loop (i+step))
in loop lwb

It has two named arguments: step and upe; the latter is the exclusive upper
bound. It is an ordinary OCaml function and can be used as is, in OCaml and
in the generated code, e.g.:

let sum ar = .<fun arr n →
let sum = ref 0 in
forloop 0 ˜upe:n ˜step:4 (fun i →
for j=i to min (i+3) (n−1) do
sum := !sum + arr.(j) done);

!sum>.

Its applications, however, are translated to OffshoringIR by a special rule, which
is better understood by looking at the result of translating the two nested loops
in sum ar:

For {id = ”i 23”; ty = TNum I32; lwb = Const (Const num (I32, ”0”));
upe = LocalVar ”n 21”; step = Const (Const num (I32, ”4”));
body = Block (<empty>,

25

1 module File stub : sig
2 type file (∗ abstract ∗)
3 val fnull : file (∗ null pointer FILE ∗)
4 val fopen : string → string → file (∗ standard C fopen, fclose ∗)
5 val fclose : file → unit
6 val write f32 : file → float32 → unit (∗ not in C standard library, but ∗)
7 val write delim : file → unit (∗ assume as also available, e.g. as a C macro ∗)
8 end = struct
9 type file = unit let fnull = () let fopen = fun → assert false . . .

10 end
11

12 let write arr = .<fun arr n fname →
13 let fp = fopen fname ”w” in
14 assert (fp ̸= fnull);
15 for i=0 to n−1 do
16 if i > 0 then write delim fp;
17 write f32 fp arr.(i)
18 done;
19 fclose fp>.
20

21 type typ += TFile
22

23 module Conv = struct include DefaultConv
24 let type conv : pathname → typ list → typ = fun pn args → match pn with
25 | ”File stub.file” → TRef TFile
26 | → DefaultConv.type conv pn args
27 let id conv : pathname → string → string = fun pn v → match (pn,v) with
28 | (”File stub”,”fnull”) → ”NULL”
29 | (”File stub”,v) → v
30 | (”Stdlib”,”̸=”) → ”NEQ” (∗ non−numeric type comparison ∗)
31 | → DefaultConv.id conv pn v
32 end
33

34 let = Offshoring.offshore to c ˜cnv:(module Conv) ˜name:”writearr” write arr
35

36 (∗ The code printed by offshore to c above: ∗)
37 void writearr(float ∗ const arr 1,int const n 2,char ∗ const fname 3){
38 FILE ∗ const fp 4 = fopen(fname 3,”w”);
39 assert(NEQ(fp 4,NULL));
40 for (int i 5 = 0; i 5 < n 2; i 5 += 1){
41 if (i 5 > 0)
42 write delim(fp 4);
43 write f32(fp 4,arr 1[i 5]);
44 }
45 fclose(fp 4);
46 }

Figure 8: Extensibility example, slightly abbreviated

26

For {id = ”j 24”; ty = TNum I32; lwb = LocalVar ”i 23”;
step = Const (Const num (I32, ”1”));
upe =
FunCall (OP.ADD I32,
[Const (Const num (I32, ”1”));
FunCall (OP.Other ”min”,
[FunCall (OP.ADD I32, [LocalVar ”i 23”; Const (Const num (I32, ”3”))]);
FunCall (OP.SUB I32, [LocalVar ”n 21”; Const (Const num (I32, ”1”))])])]);

body = Block (<empty>,
Exp (FunCall (OP.ASSIGN (TNum I32),

[MutVar ”sum 22”;
FunCall (OP.ADD I32,
[FunCall (OP.DEREF (TNum I32), [MutVar ”sum 22”]);
FunCall (OP.Array1 get (TNum I32), [LocalVar ”arr 20”; LocalVar ”j 24”])])])))})}

Pretty-printing the result as C for-loops is straightforward:

int sum ar(int ∗ const arr 20,int const n 21){
int sum 22 = 0;
for (int i 23 = 0; i 23 < n 21; i 23 += 4)
for (int j 24 = i 23; j 24 < (1 + min(i 23 + 3,n 21 − 1)); j 24 += 1)
sum 22 = sum 22 + (arr 20[j 24]);

return sum 22;
}

The do-while can be supported similarly.
In general, complex control structures may be represented in OCaml as call-

by-name functions – that is, functions taking explicit thunks as arguments.
Offshoring will then map such function applications, unwrapping thunks, to
invocations of appropriately defined C macros, taking advantage of the fact
that macro applications look like function applications.

C also has break, continue, return and goto. In principle, one may define
dummy OCaml ‘functions’ like break : unit→unit, whose applications are pretty-
printed as C in a special way. The code with those functions can only be off-
shored, not executed as OCaml. Mainly, nothing prevents using such ‘functions’
outside loop bodies, hence breaking the guarantee that the result of offshoring
always compiles. A better idea is to introduce iteration combinators with an
early exit, similar to forloop.

4.5. Other Challenges

The code to offshore must be of the form .<fun args → body>., with no local
function declarations. Therefore, recursive OCaml functions are out of scope:
the generated code should use loops rather than recursion. That does not mean
that we have to burden the end user with transforming recursion into iteration.
Instead, we should offer the end user higher-level combinators, something like
iter assign in §3, representing the needed processing patterns. We should take
the full advantage of OCaml as the Meta Language – the purpose for which the
OCaml predecessor was initially introduced [26].

Offshoring does not cover the whole of C either, in particular, pointer arith-
metic. Pointer arithmetic is an example of redundancy in C since it can be
represented with array indexing, without any loss of performance. After all, un-
restricted pointer arithmetic is not allowed in modern C either: a pointer and

27

that pointer after integer addition/subtraction must point to the same array or
one element past the array. Otherwise, the behavior is undefined.20 Further-
more, the C standard itself defines pointer arithmetic in terms of arrays indexing.
HPC code typically uses array indexing rather than pointer arithmetic: perhaps
an influence of the still widely used Fortran, which has no pointer arithmetic.

4.6. Pointers and References

The metaphor of OCaml as C is strained the most when it comes to mutable
variables. Compare the following OCaml and C code

let exr1 = fun y → let x = ref 0 in x := 1; incr x; !x + y

int exr1(int const y) {int x = 0; x = 1; x++; return (x+y);}

In OCaml, all variables are variables in the sense of lambda calculus variables:
they stand for values, they are substitutable with values, they are first-class.
Reference-type variables like x stand for values which are memory cells, whose
content can be accessed and modified using ‘!’, ‘:=’, incr operations, which are
ordinary functions. In contrast, mutable variables in C are not substitutable
and not first-class: i.e., they are not variables in the sense used in algebra and
logic. Mentioning of a mutable variable in an expression like x+y or passing it
to a function like foo(x) passes the content of the mutable cell associated with
the variable, but not the mutable cell itself. Explicit dereference is not needed;
on the other hand, assignment and increment are not ordinary functions but
rather special forms whose semantics is complicated and requires the concept of
so-called L-values. What further complicates the picture is that C also has an
analogue of OCaml variables (like y in exr1) and pointer types.

Nevertheless, the two exr1 pieces of code show the very close similarity, which
suggests that let (x: t ref) = ref e in. . . is to be offshored as t x = e’; . . . and
x := e in OCaml as x = e’ in C (where e’ is the offshored e), and further the
OCaml !x as just x in C. This is basically the translation proposed by Eckhardt
et al. [9], to be referred to as ‘simple offshoring’ below. It clearly expresses the
idea that an OCaml variable bound to a value of reference type is a model of a
mutable C variable.

The model breaks however, upon closer inspection. Consider the OCaml
expression !x + 1, where x is a variable of int ref type. The simple offshoring
suggests x + 1 as C translation. Indeed, in a bigger context, the following
OCaml and C code

let exr21 () = let x = ref 0 in !x + 1
int exr21() { int x = 0; return x+1; }

clearly correspond. Let us put the same !x + 1 in a different context, however:

let exr22 x = !x + 1

The corresponding C code is then

20ISO/IEC 9899:2011, Sec 6.5.6 “Additive Operators”

28

int exr22(int ∗ const x) { return ∗x + 1; }

The very same !x + 1 is now translated differently.
Here is an even more difficult example for simple offshoring:

let exr3 () = let x = ref 0 in let y = x in y := 42; !x + !y

The problem is translating let (y:int ref) = x in Clearly we cannot translate
it as int y = x; as it makes y a fresh mutable variable initialized with the current
value of x but mutated independently. In OCaml exr3, however, y is an alias
of x, substitutable with x. As mentioned earlier, C has pointer types and the
analogue of OCaml variables. Using them we can offshore exr3 as

int exr31(){ int temp = 0; int ∗ const x = &temp; int ∗ const y = x;
∗y = 42; return ∗x + ∗y; }

Although semantically correct, it is not satisfactory since OCaml’s x is repre-
sented as two variables in C, temp and x, and requiring twice as much mem-
ory. This translation essentially gives up on representing mutable variables in
OCaml.

Simple offshoring can be saved by imposing restrictions that outlaw all
OCaml code that simple offshoring has trouble with – which is what Eckhardt
et al. [9] do, albeit silently. The paper mentions no restrictions. However, if
we carefully examine the typing rules in its Appendix A2, we discover that the
restrictions are imposed after all: in a type t ref, t must be a base type; the
right-hand side of a let-expression must not be an expression of a reference type,
with the sole exception of ref e. Function arguments of reference types are also
out of question.

Until very recently, BER MetaOCaml used simple offshoring with its re-
strictions. Although proved to be more or less adequate for numeric code, the
severity of the restrictions (e.g., precluding ref-type function arguments or mu-
table references of array or pointer types) has been felt at times, necessitating
workarounds and fiddling with the generator.

The problem has been systematically investigated in [16],21 which proposed
the translation free from any restrictions on types and occurrences of variables,
and maintaining the ‘look and feel’ of mutable C variables in OCaml. The
problem was distilled to the fact that mutable C variables of int type and const
variables of int ∗ type are represented in OCaml the same way: as variables of
int ref type. Thus translation from C to OCaml is non-injective, and hence the
inverse mapping, from OCaml to C (i.e., offshoring) does not exist. The resolu-
tion is to annotate OCaml variables of reference types as mutable or constant.
The annotation is inferred simply: the variables bound by let-expressions of
the form let x = ref e in . . . are to be annotated as mutable; the rest are con-
stant. The offshoring translation is hence (see [16] for details, derivation, formal
properties and justification):

21and further, in https://okmij.org/ftp/meta-programming/mutable-var.html

29

https://okmij.org/ftp/meta-programming/mutable-var.html

• let (x : t ref) = ref e in . . . in OCaml is offshored as t x = e;. . . in C, with
x marked as mutable;

• Any other let (x:t) = e in . . . in OCaml is offshored as t const x = e; . . . ,
with x marked as constant;

• A usage occurrence of x is offshored as &x if x is mutable; or just x other-
wise;

• The dereference operator ‘!’ of OCaml is translated to the equivalent ‘∗’
operator of C;

• Assignment e1 := e2 of OCaml is translated as ∗e1’ = e2’ in C (where e1’
and e2’ are the translations of e1 and e2, resp.)

• As syntax sugar, we prettier-print ∗&x as x, although it is valid C and
could be left as it is.

This translation is implemented in MetaOCaml N114. As an example, it
offshores exr21 and exr22 as expected (described earlier); exr3, repeated below

let exr3 () = let x = ref 0 in let y = x in y := 42; !x + !y

is offshored to

int exr32(){
int x 1 = 0;
int ∗ const y 2 = &x 1;
(∗y 2) = 42;
return (x 1 + (∗y 2));
}

What feels like a mutable variable in OCaml’s exr3 is represented as the mutable
variable x 1 in C without further ado (contrast with exr31). Finally, we can write
idiomatic OCaml code and have it mapped to just as idiomatic C code – without
any restrictions or hidden overhead.

5. Tagless-final Embedding

A different way to generate C is to embed it in OCaml, in tagless-final style
[10, 11]. This embedding is emphatically different from the mere representation
of C AST in OCaml (§2, §6): the latter gives no assurances about well-typedness,
absence of unbound variables or unexpected shadowing. Tagless-final embedding
makes such assurances and hence guarantees that the generated C code compiles
without errors. We discuss the guarantees more formally in §5.2.

Tagless-final approach may seem orthogonal to offshoring: whereas the latter
is akin to embedding a language using quotes/templates, tagless-final is embed-
ding using combinators [27]. Nevertheless, the two approaches converge in the
end, see §5.4. The challenges of offshoring – type inference, local variables, con-
trol structures, mutable variables, etc. – detailed in §4 confront tagless-final as
well. The lessons learned in addressing those challenges help here, too.

30

5.1. Tagless-final by Example

In the tagless-final style, an embedded language is represented as a (multi-
sorted) algebra whose operations are the syntactic forms of the language. Let’s
take an example: the same example of vector addition that we used when in-
troducing offshoring in §3, reproduced below for ease of reference.

let addv = fun n vout v1 v2 →
for i=0 to n−1 do

vout.(i) ← v1.(i) + v2.(i) done

The minimal language to write such code can be described as follows.

module type cde = sig
type α exp (∗ Abstract type of an expression ∗)

val int : int → int exp
val (+) : int exp → int exp → int exp
val (−) : int exp → int exp → int exp

type α stm (∗ A statement ∗)
val for : int exp → int exp → (int exp → unit stm) → unit stm

type α arr (∗ An array (variable) ∗)
val array get : α arr → int exp → α exp
val array set : α arr → int exp → α exp → unit stm

type α proc t (∗ The complete function ∗)
val mk3arr :
(int exp → int arr → int arr → int arr → unit stm) →
(int → int array → int array → int array → unit) proc t

end

It is a typed first-order statement-oriented DSL embedded in OCaml. OCaml
values of the type t exp represent DSL expressions of type t; OCaml values of the
type t stm represent statements (which may return the result unless t is unit).
Expressions are built of integer literals and variables (at present, arguments)
using addition, subtraction and array dereference operations. Statements are
the for-loop and array element assignment. The operation mk3arr builds the
function header and provides arguments to use in the function body. Granted,
it is too specific, but can be generalized, see §5.3. The definitions of these DSL
constructors (DSL expression forms) are collected as an OCaml signature.

Using the operations of the signature, the vector addition takes the form:

let addv dsl = mk3arr @@ fun n vout v1 v2 →
for (int 0) (n − int 1) @@ fun i →
array set vout i @@ array get v1 i + array get v2 i

which is quite like the OCaml addv we started with, after desugaring of array
operators (cf. particularly the output of add staged in §3).

One may implement cde in many ways. The simplest is to relate each DSL
operation with the corresponding OCaml operation: meta-circular interpreter.

module OCde = struct
type α exp = unit → α

31

let int x = fun () → x
let (+) x y = fun () → Stdlib.(+) (x ()) (y ())
let (−) x y = fun () → Stdlib.(−) (x ()) (y ())

type α stm = unit → α
let for lwb upb body = fun () → for i = lwb () to upb () do body (fun () → i) () done

type α arr = α array (∗ An array (variable) ∗)
let array get a x = fun () → Array.get a (x ())
let array set a i v = fun () → Array.set a (i ()) (v ())

type α proc t = α (∗ The complete function ∗)
let mk3arr :
(int exp → int arr → int arr → int arr → unit stm) →
(int → int array → int array → int array → unit) proc t = fun body →
fun n vout v1 v2 → body (fun () → n) vout v1 v2 ()

end

DSL expressions map to OCaml expressions: to be precise, DSL expressions are
represented as OCaml thunk values. Thunks for proper sequencing of imperative
updates were first proposed and explained by Landin in 1965 [28]. Since DSL
functions are realized as OCaml functions, they can be immediately applied to
sample data, which is useful for testing. The significance of OCde to state and
prove assurances is explained in §5.2.

Tagless-final permits, even encourages, multiple DSL implementations. For
example, one may also implement cde to generate OCaml code, with the help
of MetaOCaml brackets and escapes:

module MOCde = struct
type α exp = α code

let int : int → int exp = fun x → .<x>.
let (+) : int exp → int exp → int exp = fun x y → .<.˜x + .˜y>.
let (−) : int exp → int exp → int exp = fun x y → .<.˜x − .˜y>.

type α stm = α code
let for lwb upb body = .<for i= .˜lwb to .˜upb do .˜(body .<i>.) done>.

type α arr = α array code
let array get a i = .< (.˜a).(.˜i) >.
let array set a i v = .< (.˜a).(.˜i) ← .˜v >.

type α proc t = α code (∗ The complete function ∗)
let mk3arr body = .<fun n vout v1 v2 → .˜(body .<n>. .<vout>. .<v1>. .<v2>.)>.

end

With this implementation, addv dsl gives exactly the same result as addv staged
in §3: the OCaml code for vector addition.

A related implementation generates C code:

module CCde = struct
type α exp = string

let int = string of int
let (+) = Printf.sprintf ”(%s + %s)”
let (−) = Printf.sprintf ”(%s − %s)”

32

type α stm = string
let for lwb upb body =
let i = gensym ”i” in
”for(int ” ˆ i ˆ ”=” ˆ lwb ˆ ”; ” ˆ i ˆ ”≤” ˆ upb ˆ ”; ” ˆ i ˆ ”++){\n” ˆ
” ” ˆ body i ˆ ”}”

type α arr = string
let array get = Printf.sprintf ”%s[%s]”
let array set = Printf.sprintf ”%s[%s]=%s;”

type α proc t = string (∗ The complete function ∗)
let mk3arr body =
let n = gensym ”n” in let vout = gensym ”vout” in
let v1 = gensym ”v1” in let v2 = gensym ”v2” in
Printf.sprintf
”void addv(int const %s, int∗ const %s, int∗ const %s, int∗ const %s){\n%s\n}”
n vout v1 v2 (body n vout v1 v2)

end

With this implementation of the DSL, the same addv dsl produces the string

void addv(int const n 1, int∗ const vout 2, int∗ const v1 3, int∗ const v2 4){
for(int i 5=0; i 5≤(n 1 − 1); i 5++){
vout 2[i 5]=(v1 3[i 5] + v2 4[i 5]);}
}

which is exactly the C vector addition code, obtained in §3 via offshoring. We
started §3 by noticing that the vector addition code in OCaml and C look very
similar. Now we see why: they are different interpretations of the same DSL
expression. Speaking algebraically, they are the images of the same (initial
algebra) term addv dsl upon different homomorphisms. One may write many
more similar implementations of the cde signature, to obtain code in Fortran,
WASM, LLVM IR, etc.

In §3.1 we have generalized the simple addv first to unroll the loop, and
then to perform strip mining and scalar promotion, generating OpenBLAS-
like code. All of this is easily possible in the tagless-final style as well, which is
demonstrated in the accompanying code: tf_addv.ml is the re-write of addv.ml
in the tagless-final style. The generated C code is identical.

The tagless-final DSL used in [29] is more extended, with full integer, floating-
point and boolean operations. We also added a partial-evaluation layer for online
partial-evaluation of any cde implementation, be it OCaml or C or Scala.

5.2. Formalities

We now state the assurances provided by the tagless-final approach more
formally, indicating how they can be demonstrated.

The signature cde defined our DSL: its syntactic categories – expression,
statement, array, procedure – and the operations to construct them. The DSL
is typed: the categories are indexed by types; the signatures of DSL operations
express the typing rules. For example,

val for : int exp → int exp → (int exp → unit stm) → unit stm

33

tf_addv.ml
addv.ml

represents the typing rule (in natural deduction style):

⊢exp e1 : int ⊢exp e2 : int

[⊢exp i : int]
···

⊢stm b : unit

⊢stm for e1 e2 b : unit

The DSL is embedded in OCaml: OCaml expressions of the unit stm type
stand for DSL statements, for example

for (int 0) (int 10) (fun x → array set a x (int 0))

(where a is a variable of int arr type in scope) – and similar for t exp, t arr, t proc t
expressions. One has to be aware that not all unit stm OCaml expressions
correspond to DSL statements: e.g.,

for (int 0) (int 10) (fun x → raise Not found)

does not – so-called ‘exotic term’ (see [14, §13] for detailed discussion).
Let us delineate the subset of OCaml expressions that correspond to DSL

terms: call it Dτ . It is defined as a set of well-typed, closed, normal OCaml
expressions of type τ that are built using only abstraction, application, int n
and the other operations of the cde signature. The type τ is not arbitrary either:
see Fig. 9. The exotic term above is not in Dτ because raise is not defined in the
cde signature. OCaml expressions Dσ represent closed DSL terms (expressions,
statements, etc.) whereas Dτ expressions where τ is ι1 → ι2 → . . . → σ stand
for open DSL terms, with the variables of type ι1, ι2, etc.

DSL base types b ::= int
DSL statement types s ::= b | unit
DSL proc types p ::= s | b → p | b array → p
Representation types σ ::= b exp | s stm | b arr | p proc t
Variable types ι ::= b exp | b arr
Open term types τ ::= σ | ι → τ

Figure 9: DSL (object) types and representation types

An implementation of the cde signature may then be regarded as a denota-
tional semantics of the DSL: a collection of semantic functions that composition-
ally map DSL expressions to closed OCaml values. This style of denotational
semantics is explained in detail in [30]. Here we give a short overview.

To give the meaning to DSL types, we introduce semantic domains: Expb
(the set of meanings of DSL expressions of type b), Stms (meanings of DSL
statements), Arrb (for DSL arrays) and Procp for DSL procedures. Particular
implementations of the cde signature (particular denotational semantics) define
the content of these sets and the mapping from a term in Dτ to their element.
If the term has free variables, its meaning depends on the meanings assigned to
them. This assignment is called valuation. The type system of DSL is called
sound (with respect to the semantics) if every well-typed term has a meaning,
that is included in the meaning of its type.

34

Definition 2 (Soundness). For every d ∈ Dτ where τ = ι1 → . . . → ιn → σ
(n ≥ 0) and any valuation of its free variables if any, the meaning of d is in Expb
(if σ is of the form b exp), Stms (for σ = s stm), Arrb (for σ = b arr) or Procp
(for σ = p proc t)

The implementation OCde defines the semantic domains as:

Expb : OCaml values of type unit→b
Stms : OCaml values of type unit→s
Arrb : OCaml arrays of type b array

Procp : OCaml functions of type p
By inspection of OCde we confirm that Soundness holds for OCde: the type
system of the cde DSL is sound. The inspection of OCde is particularly simple:
all its semantic functions are patently total, and OCde is well-typed in OCaml.

The implementation MOCde is another way of giving meaning to DSL ex-
pressions in terms of (Meta)OCaml. The semantic domains are:

Expb : b code values
Stms : s code values
Arrb : b array code values

Procp : p code values
Again, by simple inspection of MOCde we confirm that Soundness holds. In

particular, any Dσ term where σ = p proc tmaps to a p code value, and, further,
to a closed and well-typed OCaml expression of type p. (The second inference
relies on the soundness of MetaOCaml: a value of type t code corresponds to
a well-typed and well-scoped OCaml expression of type t). In other words,
any closed p proc t DSL term generates a well-typed OCaml function with no
unbound variables. One may further show that the OCaml expression generated
by MOCde for a p proc t term has the same meaning as given by OCde for that
term – relying on the semantics of the multi-staged calculus underlying OCaml
developed by Taha [31].

Consider now the CCDe implementation, whose semantic domains are22

Expb : C expressions of type b
Stms : C statements returning the value of type s

(unless s is unit)
Arrb : C variables of the type b*

Procp : C procedures of the type corresponding to p
We likewise observe that CCde is sound, mapping each Dτ term to a C program
fragment. As a consequence, a closed p proc t DSL term is mapped to a closed
and well-typed C procedure. The key observation is that all semantic functions
are total and that the types α exp, etc. are all abstract, justifying the induction
principle. We also check, e.g., that statement generators produce code ending

22In cde, only unit stm may be constructed; consequently, there is no provision for return.
The extended signature cdemut in §5.3 adds return, and the claim becomes more meaningful.

35

in a closing brace or a semicolon.23

The C code is generated in CCde via printf – just as in ATLAS, Fig. 1. There
is a drastic difference however: printf statements in CCde are encapsulated in
that module and not available for, or even visible to the end user. The end user
only uses the combinators of the cde signature, as in addv dsl.

All in all, any closed proc t term in D corresponds to a well-formed and
well-typed procedure code, in OCaml or C, depending on the instance of cde.
We are statically assured of it.

5.3. Challenges: Type Inference and Mutable Variables

There are also complications, not unlike the ones described for offshoring.
The lessons learned there carry forward. Let us illustrate, on the lessons of type
inference §4.1 and mutable variables §4.6. Our running example will be summing
up a float array. To be able to write it, we extend the DSL – extensibility is the
characteristic of tagless-final – with floating-point numbers and their operations,
and then mutable variables, sequencing of statements, returning of the result:24

module type cdemut = sig
include cde

val float : float → float exp
val (+.) : float exp → float exp → float exp

type α mut (∗ type of mutable variables ∗)
val (let∗) : α exp → (α mut → ω stm) → ω stm
val dref : α mut → α exp
val (:=) : α mut → α exp → unit stm

val (@.) : unit stm → α stm → α stm (∗ sequencing ∗)

val ret : α exp → α stm

val mkfun : ?name:string → α stm → α proc t
val arg base : ?name:string → (α exp → β proc t) → (α → β) proc t
val arg array : ?name:string → (α arr → β proc t) → (α array → β) proc t

end

We have also introduced the general way to generate C functions of arbitrary
number of base- and array-type arguments. The optional argument ?name:string
is the hint for the name of the generated function or the argument. As an
example, the mk3arr in §5.1 may now be written as

let mk3arr body =
arg base ˜name:”n” @@ fun n →
arg array ˜name:”vout” @@ fun vout →
arg array ˜name:”v1” @@ fun v1 →
arg array ˜name:”v2” @@ fun v2 →
mkfun ˜name:”addv” @@ body n vout v1 v2

23Our actual implementation uses C AST for C code generation, which ensures well-
formedness. C AST does not ensure well-typedness however; but the tagless-final encap-
sulation does.

24let* is a so-called let-operator added in recent OCaml.

36

With so extended cdemut signature, the array summation code takes the
expected form

let vsum =
arg base ˜name:”n” @@ fun n → arg array ˜name:”v” @@ fun v → mkfun ˜name:”sumv” @@
let∗ sum = float 0. in
begin for (int 0) (n − int 1) @@ fun i →
sum := dref sum +. array get v i end

@.
ret (dref sum)

One can see from the type of let* that mutable variables may be of several
types, determined from the type of the initializing expression. To build a vari-
able declaration in C we need to know this type: we need type inference. The
inference is especially needed for the argument types: cf. §4.1. Since our DSL
is so simple, implementing type inference is not complicated – and much easier
than using the OCaml typechecker, as we did in offshoring. Here is the gist:

module CMutCde : (cdemut with type α proc t = string) = struct

type α typ =
| TInt : int typ
| TFloat : float typ
| TVoid : unit typ
| TVar : α typ option ref → α typ

let rec string of typ : type a. a typ → string = function
| TInt → ”int”
| TFloat → ”double”
| TVoid → ”void”
| TVar {contents = None} → failwith ”could not infer type: add type ann”
| TVar {contents = Some ty} → string of typ ty

let rec unify : type a. a typ → a typ → unit = fun t1 t2 → match (t1,t2) with
| (t1,t2) when t1 == t2 → ()
| (TVar t1, TVar t2) when t1 == t2 → ()
| (TVar {contents = Some t},t’) | (t’,TVar {contents = Some t}) → unify t t’
| (TVar ({contents = None} as tr), t) | (t,TVar ({contents = None} as tr)) → tr := Some t
| → assert false

type α exp = α typ ∗ α CCde.exp

let int x = (TInt, string of int x)
let float x = (TFloat, string of float x)

type α stm = α typ ∗ α CCde.stm

let for (tl,lwb) (tu,upb) body = unify tl TInt; unify tu TInt;
(TVoid,
CCde.for lwb upb (fun i →
let (tb,b) = body (TInt,i) in unify TVoid tb; b))

type α mut = α typ ∗ string
let (let∗) : α exp → (α mut → ω stm) → ω stm = fun (t,x) body →
let v = gensym ”x” in
let (tb,b) = body (t,v) in
(tb,Printf.sprintf ”%s %s = %s;\n%s” (string of typ t) v x b)

37

let dref (t,v) = (t,v)

let mkfun ?(name=”fn”) : α stm → α proc t = fun (tb,b) →
Printf.sprintf ”%s %s(){\n%s\n}” (string of typ tb) name b

let arg base ?(name=”n”) body =
let n = gensym name and targ = TVar (ref None) in
let bs = body (targ,n) in . . .

. . .
end

We introduce a run-time (or, more precisely, generation-time) representation
of OCaml types, and carry it around, propagating from an expression (the
first argument of let*) to the created mutable variable. The functions arg base
and arg array introduce type variables to bind during the inference. The func-
tion string of typ uses this type representation to generate a C variable dec-
laration.2526 The earlier CCde implementation is reused to actually generate
the code. The type representation is a GADT [32], therefore, the OCaml type
checker verifies that the type representation agrees with OCaml types (therefore,
unify never fails.)

The signature cdemut also incorporates the lessons learned in §4.2 and §4.6.
As the type of let* makes it clear, mutable variables may only be introduced
in statement context. There is no longer a need in normalization, §4.2, and
detection of non-offshorable code. The guarantees stated in §5.2 are maintained:
any term written by combining cdemut combinators is convertible to the well-
typed and well-formed (OCaml or C) code.

As we learned in §4.6, mutable variables are not first-class. Therefore, cdemut
introduces a special type α mut for them, which is different from the expression
type α exp. An attempt to write (cf. exr3 in §4.6)

let∗ x = int 0 in let∗ y = x in (y := int 1) @. ret x

will be rejected: the error message points to x in let∗ y = x and says that “This
expression has type int mut but an expression was expected of type ’a exp”.
That is, x is not an expression and cannot serve as an initializer. The following
however is accepted

let∗ x = int 0 in let∗ y = dref x in (y := int 1) @. ret (dref x)

which makes it clear that x and y are two independent mutable variables; the
latter is initialized with the current value of the former. The aliasing is prevented
by design.27

25The presence of failwith seems to make the interpretation non-total. One may show
however that in interpreting a closed monomorphic term t proc t that failure never occurs.

26We can avoid type variables and the unification altogether if we add to arg base and
arg array an extra argument, a ‘type annotation’ so to speak. In essence, DSL functions would
bear a type signature of sort. The accompanying code tf_addv.ml implements this approach.

27If desired, one may introduce reference types and the combinator address of: α mut → α
ref exp. Aliasing becomes possible, but it has to be explicitly marked as such.

38

tf_addv.ml

5.4. Connection to Offshoring

The implementations CCde and CMutCde used printf to generate C code.
Although encapsulated in these modules, it is still ungainly, and still requires
the DSL implementors – but not the end users! – to check well-formedness (see
the formal reasoning in §5.2 for an example). Generating well-formed C code
is a solved problem: we solved it ourselves in offshoring, when pretty-printing
OffshoringIR (Fig. 4) to C code (via C AST). It behooves us to re-use that
work and not bother with C pretty-printing again (which, albeit mundane, still
bothersome, especially the indentation to get the familiar-looking C code.) Fur-
thermore, OffshoringIR was designed as a generic low-level statement-oriented
language, to pretty-print not just to C but also FORTRAN, WASM, etc. There-
fore, by targeting OffshoringIR in the tagless-final code-generating combinators,
we may generate code in these languages as well.

For example, CCde in §5.1 generated addition and for-loop using printf and
string operations, as

let (+) = Printf.sprintf ”(%s + %s)”

let for lwb upb body =
let i = gensym ”i” in
”for(int ” ˆ i ˆ ”=” ˆ lwb ˆ ”; ” ˆ i ˆ ”≤” ˆ upb ˆ ”; ” ˆ i ˆ ”++){\n” ˆ
” ” ˆ body i ˆ ”}”

With OffshoringIR it becomes:

let (+) x y = FunCall(OP.ADD I32,[x;y])

let for lwb upb body =
let id = genvarname ”i” in
let upe = upb + int 1 in
let step = int 1 in
let b = body (LocalVar id) in
Block (Sq.empty, For {id; ty=TNum I32; lwb; upe; step; body=b})

We have to stress that to OCaml, OffshoringIR is a data structure. Although
convertible to well-formed C code (see Prop. 2), OffshoringIR does not assure
per se the well-typedness or the absence of unbound variables. The tagless-final
layer, encapsulating OffshoringIR, provides these guarantees, also performing
the needed type inference, as discussed in §5.2. Offshoring and tagless-final
hence converge on OffshoringIR: both serve as the means of providing well-
typedness guarantees, as well as syntax sugar.

One may relate tagless-final with offshoring more directly: by composing, so
to speak, MOCde with offshoring. That is, we use the MOCde implementation of
the tagless-final signature to generate OCaml code, to be offshored as described
in §3. One has to remember however that code templates and their type checking
requires compiler support. MetaOCaml thus is a different compiler than OCaml
(albeit both source- and binary compatible), requiring its own maintenance.
Tagless-final DSL targeting OffshoringIR is implementable in ordinary OCaml,
needing only the OffshoringIR pretty printer (which is a small, ordinary OCaml
library).

39

6. Related Work

In his retrospective [14], Sheard lays out the research program on meta-
programming, including heterogeneous meta-programming: “A heterogeneous
system with a fixed meta-language, in which it is possible to build multiple sys-
tems each with a different object-language, or one system with multiple object-
languages would be equally useful.” [14, §21]. The two systems presented in this
paper answer the challenge. The common intermediate language OffshoringIR
is designed to be easily rendered in many low-level languages: we have already
tried dialects of C such as OpenCL, as well as LLVM IR. We are now experi-
menting with WASM. Tagless-final approach with its inherent ability of multiple
interpretations makes the re-targeting easy. Both systems also demonstrate that
heterogeneous metaprogramming is more capable than Sheard thought: “Only
in a homogeneous metasystem can a single type system be used to type both the
meta-language and the object-language. Only homogeneous meta-systems can
support reflection, where there is an operator (run or eval) which translates rep-
resentations of programs, into the values they represent in a uniform way. This
is what makes run-time code generation possible.” [14, §2]. First, offshoring has
had run from the very beginning [9]. After all, running the offshored code is very
similar to running native MetaOCaml code: both invoke a compiler followed by
dynamic linking. In tagless-final approach, a meta-circular implementation like
OCde offers another way to run code. As to the type system of the object lan-
guage, if it is relatively simple as it tends to be for a low-level language, it may
be embedded into the meta-language type system – as offshoring and especially
tagless-final approaches demonstrate.

Offshoring as a term was first proposed by Eckhardt et al. [9], which we have
discussed already. The full potential of offshoring was not yet realized then. It
was put forth merely as a way to efficiently execute specialized OCaml code,
rather than as a general-purpose C code-generation tool. We must stress that
the original offshoring could not support most of the examples of the present
paper, because of its severe restrictions: let-expressions are only allowed in
statement context and variable declarations in C may only have constants as
initializers; loops may only have unit stride; the set of supported operations
is not extensible. As discussed in §4.6, the severe restrictions on variables of
reference types were not explained or even acknowledged in Eckhardt et al. [9].
Because of the lack of extensibility and tight integration with the OCaml type-
checker, the implementation quickly became unmaintainable and is no longer
available.

Asuna [33] was an attempt to resurrect offshoring and extend to SIMD ex-
tensions, parallelism and LLVM. The paper presented a few applications of
offshoring HPC kernels, with few details about the implementation. Curiously
the paper does not mention any restrictions on let-bindings in the source lan-
guage (raising doubts about correctness). The implementation has not been
available.

In the hindsight, one can discern offshoring already in Hoare et al. [34], who
proposed an approach for formally correct compilation. The machine language,

40

so to speak, is embedded into the source program language. That is, a ma-
chine program is the source program of a particular form: it declares all needed
variables, after which there is a single loop over the sequence of (i) primitive
assignments like v := v1 op v2 where op is an arithmetical or logical operation
and v1, v2 are variables or constants; (ii) conditionals whose test is a simple
boolean expression or a variable. Such program, called normal form, is trivially
converted to assembly. Like in offshoring, a low-level program is represented as
a particular form of higher-level one. The compilation is then normalization:
converting any program to that normal form, by a sequence of transformations
(rather than by evaluation).

The model of a low-level code in Hoare et al. [34] is rather crude: for example,
it cannot account for idiosyncrasies of register usage (especially common in x86
architectures), or even stack frames. After all, the source language does not
have any procedures. A very strong assumption, crucial to the formalism in
justifying substitutions is that all expressions are pure. It is not clear if the
approach has been implemented as a compilation system and used on realistic
examples. The very strong assumptions make one doubt it.

Viewed in the similar light is KreMLin [35] and its language Low*, a subset
of F* that is easily mapped to a small subset of C. Because F* is a dependently-
typed language, one may state and verify sophisticated correctness properties
(including functional correctness). The paper proves that the mapping preserves
not just typing but also semantics and side-channel resistance. The system of
Protzenko et al. [35] has actually been used in practice, in verifying TLS 1.3.
Like in offshoring, the translatable subset of F* is not easy to state in types;
therefore, C code extraction (‘offshoring’) is best effort.

Also related is C code extraction from constructive Coq proofs – although
Coq is quite harder to program in; it is also harder to control the form of the
produced C code and ensure high performance.

Among other heterogeneous metaprogramming system we should mention
MetaHaskell [36], LMS [37] and Terra [38]. Terra, however, does not assure the
absence of unbound variables.

FrontC by Hugues Cassé defines the abstract syntax for C, as an OCaml
data structure, and includes the parser and the pretty-printer. It is used (with
significant modifications) in CIL (C Intermediate Language)28 [39] and Binary
Analysis Platform.29 Our abstract C syntax (produced from the OffshoringIR)
is influenced by Cassé’s, but completely re-designed and re-written from scratch.
FrontC is developed to represent any existing C program (so to analyze it). We
are interested only in C generation, and so chose a small but just as expressive
and ‘sane’ subset of C – quite in the spirit of CIL but with different design
choices. The biggest change is the explicit distinction between expressions, sim-
ple statements (assignments and function calls) and general statements like loops
and branching. This distinction lets us precisely model comma-expressions, and

28http://cil-project.github.io/cil/doc/html/cil/cil001.html
29https://githubhelp.com/BinaryAnalysisPlatform/bap

41

http://cil-project.github.io/cil/doc/html/cil/cil001.html
https://githubhelp.com/BinaryAnalysisPlatform/bap

support the mixing of variable declarations and statements, allowed since C99.
(FrontC does not support C99.) In our subset of C, a declaration introduces
only one variable. We regard assignment and increment as statements. There-
fore, such C constructions as x=y=0 and --x * y++ are not representable in our
abstract syntax and hence never produced.

The idea of using a language with well-developed abstraction facilities as
a ‘macro’ for a low-level object language was forcefully advocated by Kamin
et al. [40]. The authors stressed higher-order functions as an abstraction mech-
anism, contrasting their approach with ‘C of Engler et al. [41], which use C as a
metalanguage. We also share with Kamin et al. [40] the ideal of composability:
object program fragments are represented as values in the meta-language, and
these values may be composed – so to build bigger fragments and ultimately
whole programs.

However, as Kamin et al. [40] say themselves, they merely “sketch a plausi-
ble approach.” Furthermore, “A complete and practical solution would need to
contend with issues of security and portability. . . ”. Indeed, the examples pre-
sented in Kamin et al. [40] all represent code as strings, with no abstraction and
type annotations. As the paper says, the distinction between object language
statements and expressions is not expressed in the metalanguage. The genera-
tor hence provides no guarantees: the produced code may easily be ill-formed
(let alone ill-typed or with unbound variables). The ability of a metalanguage
to reason about the object program is not yet realized. Tagless-final approach
presented in this paper solves all these problems. It is hence the completion of
the program initiated by Kamin et al. [40].

Generating code using combinators pioneered by Kamin has widely spread:
see [10, 42] for extensive bibliography. Lightweight Modular Staging (LMS) [37]
(especially Rompf [43]: a rare system description) is also based on combinator-
based approach, somewhat inspired by tagless-final. Of more recent work one
may mention Ceresa et al. [44] who design an embedded DSL meant for veri-
fication (the authors also plan to generate C code). Another work to contrast
with is Westphal and Voigtländer [45], who generate (relatively) low-level code
and other artifacts from a high-level specification, expressed in (what essentially
is) a tagless-final DSL. Unlike us the authors aim not for the most performant
but for the most idiomatic code, given their goal is education. Since the naively
generated code is hardly idiomatic, the authors are exploring more sophisticated
translations. Their approach can thus be called ‘optimize from below’ the DSL
layer. In contrast, the present paper presents ‘optimize from above’: the tagless-
final DSL (or the OCaml subset to offshore) are meant to be straightforward to
render as a low-level code. The optimizations happen when we produce DSL
expressions from higher-level specifications (such as addv abs in §3.1.)

The tagless-final approach described in §5 may be traced back to C-code–
generating combinators in Cohen et al. [1]. Those combinators were monomor-
phic, and the explicit passing of the C variable environment made them un-
gainly: Compare [1, Fig. 18]

gen inst (gen assign y (gen add (lvrv x) (gen int cst 3))) env

42

with y := x + int 3 in our approach. Ensuring well-scoping of the C code was
also the responsibility of a programmer, to pass the environment env in the
disciplined way.

An example demonstrating the benefit of tagless-final for generating both
reliable and performant code is Masuda and Kameyama [46]. The subject is
cryptography based on modular arithmetic, which involves a very expensive
mod operation. The authors designed a tagless-final DSL and used it to both
generate C code and to generate interval analysis verification conditions. Their
analysis turns out rather precise and allowed them to prove the absence of inte-
ger overflows even if they apply mod less frequently – which notably improved
performance. This is a rare example of verification and optimization going
hand-in-hand. Another example is Kiselyov and Imai [47]: generating com-
munication code alongside session-type–checking. The paper also demonstrates
using tagless-final with staging, similar to the MOCde interpreter in §5.1.

7. Evaluation and Conclusions

We have presented two implemented approaches for generating high-performance
C code that compiles without errors or warnings and can be freely linked with
other C libraries. Offering correctness guarantees requires generator abstrac-
tions, which is a challenge to design and maintain. We have described the
notable problems we experienced and the ways we addressed them. One of the
main problems turns out maintainability. The current systems are explicitly
designed to be extensible and to last.

Offshoring was used in [13] to generate OpenMP matrix-matrix multiplica-
tion code that is faster, sometimes 2×, than the state of the art BLAS code
generated by ATLAS; tuning was also faster. In [12] offshoring has generated
GPGPU (OpenCL) matrix-matrix multiplication and k-means clustering code.
The tagless-final approach is used in the highest-performance streaming library
[48, 29] to generate OCaml, C and Scala code. One of its application is gen-
erating C code for the software-defined FM radio [49]. Both approaches thus
proved adequate for their intended tasks.

7.1. Comparison of Offshoring and Tagless-Final

The two approaches share the metaphor of OCaml as C: representing a small
imperative language (a subset of C) in the form of OCaml expressions. Their
comparison is nuanced and depends on many factors, some of which are listed
below.

Offshoring embeds a language using quasi-quotes/templates, whereas the
tagless-final approach uses code combinators. Quasi-quotes may be taken as a
syntax sugar over the combinators. However, the desugaring is not that obvious
or trivial [27, 50, 17, 51].

Quasi-quotation, or templates, are generally regarded as more pleasant to
program with, offering a better syntax for loops, control structures, and pattern-
matching. MetaOCaml also offers let-insertion.

43

On the other hand, typed quasi-quotation (code templates) requires compiler
support. Offshoring described in this paper depends on MetaOCaml, which is a
separately maintained dialect of OCaml (albeit fully source- and binary compat-
ible). In contrast, tagless-final can be implemented in bare OCaml. Therefore,
tagless-final is easier to port: it can be, and has been, implemented using mod-
ules, type-classes, traits, implicits and objects. In general, some form of higher-
rank types (even in the form of module system) is helpful, although one can get
by without it if the DSL is simple enough so that it can be monomorphized.

A tagless-final DSL is easier to tailor, to provide just enough combinators
needed for the task at hand.

With tagless-final DSL we can ensure that any well-typed DSL expression
results in code (which is well-formed and well-typed, by construction). On the
other hand, offshoring is inherently partial and best effort.

Acknowledgments. I am very grateful to the anonymous reviewers of SCP, FLOPS
2022, OCaml 2022 and ML 2022 for many, helpful comments and suggestions.
This work was partially supported by JSPS KAKENHI Grants Numbers 17K12662,
18H03218, 21K11821 and 22H03563.

References

[1] A. Cohen, S. Donadio, M. J. Garzarán, C. A. Herrmann, O. Kiselyov, D. A.
Padua, In search of a program generator to implement generic transforma-
tions for high-performance computing, Science of Computer Programming
62 (2006) 25–46.

[2] R. C. Whaley, A. Petitet, Minimizing development and maintenance costs
in supporting persistently optimized BLAS, Software—Practice and Expe-
rience 35 (2005) 101–121.

[3] M. Frigo, S. G. Johnson, The design and implementation of FFTW3,
Proceedings of the IEEE 93 (2005) 216–231.

[4] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson,
N. Rizzolo, SPIRAL: Code generation for DSP transforms, Proceedings of
the IEEE 93 (2005) 232–275.

[5] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, S. P. Ama-
rasinghe, Halide: a language and compiler for optimizing parallelism, lo-
cality, and recomputation in image processing pipelines, in: H.-J. Boehm,
C. Flanagan (Eds.), ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, ACM, 2013, pp. 519–530.

[6] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
Mcrae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly, Firedrake: Automating
the finite element method by composing abstractions, ACM Trans. Math.

44

Softw. 43 (2016). URL: https://www.firedrakeproject.org/. doi:10.
1145/2998441.

[7] O. Kiselyov, Generating C, in: M. Hanus, A. Igarashi (Eds.), Func-
tional and Logic Programming, volume 13215 of Lecture Notes in Computer
Science, Springer International Publishing, 2022, pp. 75–93. doi:10.1007/
978-3-030-99461-7_5.

[8] N. Takashima, O. Kiselyov, Y. Kameyama, MetaOCaml as a high-level
LLVM macro, Japan Society for Software Science and Technology (JSSST),
31st annual meeting, September 2014 (in Japanese), 2014.

[9] J. Eckhardt, R. Kaiabachev, E. Pasalic, K. N. Swadi, W. Taha, Implicitly
heterogeneous multi-stage programming, New Generation Computing 25
(2007) 305–336. doi:10.1007/s00354-007-0020-x.

[10] J. Carette, O. Kiselyov, C.-c. Shan, Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages, Journal of Func-
tional Programming 19 (2009) 509–543.

[11] O. Kiselyov, Typed tagless final interpreters, in: Proceedings of the 2010
International Spring School Conference on Generic and Indexed Program-
ming, SSGIP’10, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 130–174.
doi:10.1007/978-3-642-32202-0_3.

[12] K. Hirohara, Generating GPU kernels from high-level specifications using
MetaOCaml, 2019. Tohoku University, Master Thesis, in Japanese.

[13] G. Bussone, Generating OpenMP code from high-level specifications, 2020.
Internship report to ENS.

[14] T. Sheard, Accomplishments and research challenges in meta-
programming, in: W. Taha (Ed.), Proceedings of SAIG 2001: 2nd In-
ternational Workshop on Semantics, Applications, and Implementation of
Program Generation, number 2196 in Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2001, pp. 2–44.

[15] G. Ofenbeck, T. Rompf, M. Püschel, RandIR: differential testing for em-
bedded compilers, in: A. Biboudis, M. Jonnalagedda, S. Stucki, V. Ure-
che (Eds.), Proceedings of the 7th ACM SIGPLAN Symposium on Scala,
SCALA@SPLASH 2016, ACM, 2016, pp. 21–30. doi:10.1145/2998392.

[16] O. Kiselyov, Do mutable variables have reference types?, 2022. URL:
http://arxiv.org/abs/2211.04107. doi:10.48550/arXiv.2211.04107,
ML Family Workshop 2022.

[17] O. Kiselyov, The design and implementation of BER MetaOCaml - sys-
tem description, in: FLOPS, number 8475 in Lecture Notes in Computer
Science, Springer, 2014, pp. 86–102. doi:10.1007/978-3-319-07151-0_6.

45

https://www.firedrakeproject.org/
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1007/978-3-030-99461-7_5
http://dx.doi.org/10.1007/978-3-030-99461-7_5
http://dx.doi.org/10.1007/s00354-007-0020-x
http://dx.doi.org/10.1007/978-3-642-32202-0_3
http://dx.doi.org/10.1145/2998392
http://arxiv.org/abs/2211.04107
http://dx.doi.org/10.48550/arXiv.2211.04107
http://dx.doi.org/10.1007/978-3-319-07151-0_6

[18] O. Kiselyov, BER MetaOCaml N114, https://okmij.org/ftp/ML/

MetaOCaml.html, 2023.

[19] C. Calcagno, W. Taha, L. Huang, X. Leroy, Implementing multi-stage
languages using ASTs, gensym, and reflection, in: GPCE, number 2830 in
Lecture Notes in Computer Science, 2003, pp. 57–76. doi:10.1007/978-3-
540-39815-8_4.

[20] J. Yallop, D. Sheets, A. Madhavapeddy, A modular foreign function inter-
face, Science of Computer Programming 164 (2018) 82–97. doi:10.1016/
j.scico.2017.04.002.

[21] O. Kiselyov, Reconciling Abstraction with High Performance: A Meta-
OCaml approach, Foundations and Trends in Programming Languages,
Now Publishers, 2018. doi:10.1561/2500000038.

[22] P. S. Abrams, An APL machine, Ph.D. thesis, Stanford Linear Accelerator
Center, Stanford University, Stanford, CA, USA, 1970. SLAC-114 UC-32
(MISC).

[23] J. Zhu, J. Hoeflinger, D. Padua, Compiling for a hybrid programming model
using the LMAD representation, in: Languages and Compilers for Parallel
Computing, Springer Berlin Heidelberg, 2003, pp. 321–335. doi:10.1007/3-
540-35767-x_21.

[24] P. Dybjer, A. Filinski, Normalization and partial evaluation, in: G. Barthe,
P. Dybjer, L. Pinto, J. Saraiva (Eds.), APPSEM 2000: International Sum-
mer School on Applied Semantics, Advanced Lectures, number 2395 in
Lecture Notes in Computer Science, Springer, 2002, pp. 137–192.

[25] A. Sabry, M. Felleisen, Reasoning about programs in continuation-passing
style, Lisp and Symbolic Computation 6 (1993) 289–360.

[26] M. Gordon, R. Milner, L. Morris, M. Newey, C. Wadsworth,
A metalanguage for interactive proof in LCF, in: Conference
Record of the Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages, ACM SIGACT-SIGPLAN, Tucson, Arizona,
1978, pp. 119–130. URL: http://www-public.tem-tsp.eu/~gibson/

Teaching/CSC4504/ReadingMaterial/GordonMMNW78.pdf.

[27] C. Chen, H. Xi, Meta-programming through typeful code representa-
tion, Journal of Functional Programming 15 (2005) 797–835. doi:10.1017/
S0956796805005617.

[28] P. J. Landin, A correspondence between ALGOL 60 and Church’s lambda-
notation: Part I, Communications of the ACM 8 (1965) 89–101. doi:10.
1145/363744.363749.

[29] strymonas, Strymonas streams: stream fusion, to completeness, 2022. URL:
https://strymonas.github.io.

46

https://okmij.org/ftp/ML/MetaOCaml.html
https://okmij.org/ftp/ML/MetaOCaml.html
http://dx.doi.org/10.1007/978-3-540-39815-8_4
http://dx.doi.org/10.1007/978-3-540-39815-8_4
http://dx.doi.org/10.1016/j.scico.2017.04.002
http://dx.doi.org/10.1016/j.scico.2017.04.002
http://dx.doi.org/10.1561/2500000038
http://dx.doi.org/10.1007/3-540-35767-x_21
http://dx.doi.org/10.1007/3-540-35767-x_21
http://www-public.tem-tsp.eu/~gibson/Teaching/CSC4504/ReadingMaterial/GordonMMNW78.pdf
http://www-public.tem-tsp.eu/~gibson/Teaching/CSC4504/ReadingMaterial/GordonMMNW78.pdf
http://dx.doi.org/10.1017/S0956796805005617
http://dx.doi.org/10.1017/S0956796805005617
http://dx.doi.org/10.1145/363744.363749
http://dx.doi.org/10.1145/363744.363749
https://strymonas.github.io

[30] O. Kiselyov, K. Sivaramakrishnan, Eff directly in OCaml, Electronic pro-
ceedings in theoretical computer science 285 (2018) 23–58. doi:10.4204/
EPTCS.285.2.

[31] W. Taha, Multi-Stage Programming: Its Theory and Applications, Ph.D.
thesis, Oregon Graduate Institute of Science and Technology, 1999.

[32] H. Xi, C. Chen, G. Chen, Guarded recursive datatype constructors, in:
POPL, 2003, pp. 224–235. doi:10.1145/640128.604150.

[33] N. Takashima, H. Sakamoto, Y. Kameyama, Generate and offshore: type-
safe and modular code generation for low-level optimization, in: Proc.
ACM SIGPLAN Workshop on Functional High-Performance Computing,
FHPC@ICFP 2015, Vancouver, BC, Canada, September 3, 2015, ACM,
2015, pp. 45–53. doi:10.1145/2808091.

[34] C. A. R. Hoare, H. Jifeng, A. Sampaio, Normal form approach to compiler
design, Acta Informatica 30 (1993) 701–739. doi:10.1007/BF01191809.

[35] J. Protzenko, J. K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang,
S. Z. Béguelin, A. Delignat-Lavaud, C. Hritcu, K. Bhargavan, C. Fournet,
N. Swamy, Verified low-level programming embedded in F*, Proc. ACM
Program. Lang 1 (2017) 17:1–17:29. doi:10.1145/3110261.

[36] G. Mainland, Explicitly heterogeneous metaprogramming with Meta-
Haskell, in: ICFP, ACM Press, New York, 2012, pp. 311–322. doi:10.
1145/2398856.2364572.

[37] T. Rompf, M. Odersky, Lightweight modular staging: a pragmatic ap-
proach to runtime code generation and compiled DSLs, Commun. ACM 55
(2012) 121–130. doi:10.1145/2184319.2184345.

[38] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, J. Vitek, Terra: a
multi-stage language for high-performance computing, in: ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, ACM, 2013, pp. 105–116.
doi:10.1145/2499370.2462166.

[39] G. C. Necula, S. McPeak, S. P. Rahul, W. Weimer, CIL: Intermediate
language and tools for analysis and transformation of C programs, in: Pro-
ceedings of Conference on Compilier Construction, volume 2304 of Lecture
Notes in Computer Science, 2002, p. 213.

[40] S. Kamin, M. Callahan, L. Clausen, Lightweight and generative compo-
nents I: Source-level components, in: Proc. GCSE’99, volume 1799 of
Lecture Notes in Computer Science, Springer, 2000, pp. 49–62.

[41] D. R. Engler, W. C. Hsieh, M. F. Kaashoek, ‘C: A language for high-level,
efficient, and machine-independent dynamic code generation, in: In Pro-
ceedings of the ACM Symposium on Principles of Programming Languages
(POPL), St. Petersburg Beach, 1996, pp. 131–144.

47

http://dx.doi.org/10.4204/EPTCS.285.2
http://dx.doi.org/10.4204/EPTCS.285.2
http://dx.doi.org/10.1145/640128.604150
http://dx.doi.org/10.1145/2808091
http://dx.doi.org/10.1007/BF01191809
http://dx.doi.org/10.1145/3110261
http://dx.doi.org/10.1145/2398856.2364572
http://dx.doi.org/10.1145/2398856.2364572
http://dx.doi.org/10.1145/2184319.2184345
http://dx.doi.org/10.1145/2499370.2462166

[42] Y. Kameyama, O. Kiselyov, C.-c. Shan, Combinators for impure yet hy-
gienic code generation, Science of Computer Programming 112 (part 2)
(2015) 120–144. doi:10.1016/j.scico.2015.08.007.

[43] T. Rompf, Reflections on LMS: exploring front-end alternatives, in: Proc.
7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH, ACM, 2016,
pp. 41–50. doi:10.1145/2998392.2998399.

[44] M. Ceresa, F. Gorostiaga, C. Sánchez, Declarative stream runtime veri-
fication (hLola), in: Programming Languages and Systems, Springer In-
ternational Publishing, Cham, 2020, pp. 25–43. doi:10.1007/978-3-030-
64437-6_2.

[45] O. Westphal, J. Voigtländer, Implementing, and keeping in check, a DSL
used in E-Learning, in: Functional and Logic Programming - 15th Inter-
national Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020,
volume 12073 of Lecture Notes in Computer Science, Springer, 2020, pp.
179–197. doi:10.1007/978-3-030-59025-3_11.

[46] M. Masuda, Y. Kameyama, Unified program generation and verification:
A case study on Number-Theoretic Transform, in: Functional and Logic
Programming, Lecture Notes in Computer Science, Springer International
Publishing, Cham, 2022, pp. 133–151. doi:10.1007/978-3-030-99461-7_
8.

[47] O. Kiselyov, K. Imai, Session types without sophistry, in: Functional and
Logic Programming, volume 12073 of Lecture Notes in Computer Science,
Springer International Publishing, 2020, pp. 66–87. doi:10.1007/978-3-
030-59025-3_5.

[48] O. Kiselyov, T. Kobayashi, A. Biboudis, N. Palladinos, Highest-
performance stream processing, 2022. doi:10.48550/arXiv.2211.13461,
OCAML Workshop 2022.

[49] T. Kobayashi, O. Kiselyov, Complete stream fusion for software-defined
radio, 2022. URL: http://arxiv.org/abs/2208.08732. doi:10.48550/
arXiv.2208.08732.

[50] Y. Kameyama, O. Kiselyov, C.-c. Shan, Closing the stage: From staged
code to typed closures, in: PEPM, ACM Press, New York, 2008, pp.
147–157. doi:10.1145/1328408.1328430.

[51] O. Kiselyov, Generating code with polymorphic let: A ballad of value
restriction, copying and sharing, EPTCS 241 (2017) 1–22. doi:10.4204/
EPTCS.241.1.

48

http://dx.doi.org/10.1016/j.scico.2015.08.007
http://dx.doi.org/10.1145/2998392.2998399
http://dx.doi.org/10.1007/978-3-030-64437-6_2
http://dx.doi.org/10.1007/978-3-030-64437-6_2
http://dx.doi.org/10.1007/978-3-030-59025-3_11
http://dx.doi.org/10.1007/978-3-030-99461-7_8
http://dx.doi.org/10.1007/978-3-030-99461-7_8
http://dx.doi.org/10.1007/978-3-030-59025-3_5
http://dx.doi.org/10.1007/978-3-030-59025-3_5
http://dx.doi.org/10.48550/arXiv.2211.13461
http://arxiv.org/abs/2208.08732
http://dx.doi.org/10.48550/arXiv.2208.08732
http://dx.doi.org/10.48550/arXiv.2208.08732
http://dx.doi.org/10.1145/1328408.1328430
http://dx.doi.org/10.4204/EPTCS.241.1
http://dx.doi.org/10.4204/EPTCS.241.1

	Introduction
	Contributions
	Challenges
	Structure of the Paper

	Prelude: Direct C Generation
	Offshoring
	Real-life Example: Generating Optimized BLAS
	Discussion

	Challenges
	Type Inference
	Local Variables
	Extensibility
	Control Structures: Loops and Exits
	Other Challenges
	Pointers and References

	Tagless-final Embedding
	Tagless-final by Example
	Formalities
	Challenges: Type Inference and Mutable Variables
	Connection to Offshoring

	Related Work
	Evaluation and Conclusions
	Comparison of Offshoring and Tagless-Final

