
Science of Computer Programming 62 (2006) 25–46
www.elsevier.com/locate/scico

In search of a program generator to implement generic
transformations for high-performance computing

Albert Cohena,∗, Sébastien Donadiob, Maria-Jesus Garzaranc, Christoph Herrmannd,
Oleg Kiselyove, David Paduac

a ALCHEMY group, INRIA Futurs, Orsay, France
b PRiSM, University of Versailles, France

c DCS, University of Illinois at Urbana-Champaign, IL, USA
d FMI, University of Passau, Germany

e FNMOC, Monterey, CA, USA

Received 1 January 2005; received in revised form 1 June 2005; accepted 1 October 2005

Abstract

The quality of compiler-optimized code for high-performance applications is far behind what optimization and domain experts
can achieve by hand. Although it may seem surprising at first glance, the performance gap has been widening over time, due to
the tremendous complexity increase in microprocessor and memory architectures, and to the rising level of abstraction of popular
programming languages and styles. This paper explores in-between solutions, neither fully automatic nor fully manual ways to
adapt a computationally intensive application to the target architecture. By mimicking complex sequences of transformations useful
to optimize real codes, we show that generative programming is a practical means to implement architecture-aware optimizations
for high-performance applications.

This work explores the promises of generative programming languages and techniques for the high-performance computing
expert. We show that complex, architecture-specific optimizations can be implemented in a type-safe, purely generative framework.
Peak performance is achievable through the careful combination of a high-level, multi-stage evaluation language – MetaOCaml –
with low-level code generation techniques. Nevertheless, our results also show that generative approaches for high-performance
computing do not come without technical caveats and implementation barriers concerning productivity and reuse. We describe these
difficulties and identify ways to hide or overcome them, from abstract syntaxes to heterogeneous generators of code generators,
combining high-level and type-safe multi-stage programming with a back-end generator of imperative code.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Multi-stage programming; Loop transformations; Adaptive libraries; Application-specific program generators

1. Introduction and motivation

High-performance computing is maturing. Architecture, compiler and language designs have lately been rather
incremental. However, computationally intensive application programmers still complain about the lack of efficiency

∗ Corresponding author. Tel.: +33 0 1 72 92 59 40.
E-mail address: albert.cohen@inria.fr (A. Cohen).

0167-6423/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.10.013

http://www.elsevier.com/locate/scico
mailto:albert.cohen@inria.fr
http://dx.doi.org/10.1016/j.scico.2005.10.013

26 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

Fig. 1. Iterative search.

Fig. 2. Influence of parameter selection.

of their machines – the ratio of sustained to peak performance – and the poor performance of optimizing compilers
[1]. Indeed, the path from research prototypes to production-quality optimizers has been more difficult than expected,
and too many loop-nest and interprocedural optimizations are still performed manually by application programmers.
The main reasons are the following:

• driving and selecting profitable optimizations is increasingly difficult, due to the complexity and dynamic behavior
of modern processors [2–4];

• domain-specific knowledge unavailable to the compiler can be required to prove optimizations’ legality or
profitability [5,6];

• hard-to-drive transformations are not available in compilers, including transformations whose profitability is
difficult to assess or whose risk of degrading performance is high, e.g., speculative optimizations [7,8];

• complex loop transformations do not compose well, due to syntactic constraints and code size increase [9];
• some optimizations are in fact algorithm replacements, where the selection of the most appropriate code may

depend on the architecture and input data [10].

Application-specific solutions. It is well known that manual optimizations degrade portability: the performance of a C
or Fortran code on a given platform does not say much about its performance on different architectures. Several works
have successfully addressed this issue, not by improving the compiler, but through the design of application-specific
program generators, a.k.a. active libraries [11]. Such generators often rely on feedback-directed optimization to select
the best generation strategy [12], but not exclusively [13]. The most popular examples are ATLAS [1] for dense matrix
operations and FFTW [14] for the fast Fourier transform. Such generators follow an iterative optimization scheme,
as depicted in Fig. 1. In the case of ATLAS: an external control loop generates multiple versions of the optimized
code, varying the optimization parameters such as the tile size of the blocked matrix product, loop unrolling factors,
etc. These versions are benchmarked, and the empirical search engine selects the best parameters. Fig. 2 shows the

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 27

influence of the tile size of the blocked matrix product on performance on the AMD Athlon MP processor; as expected
from the two-level cache hierarchy of the processor, three main intervals can be identified, corresponding to the
temporal reuse of cached array elements; it is harder to predict and statically model the pseudo-periodic variations
within each interval, due to alignment and associativity conflicts in caches [13].

Most of these generators use transformations previously proposed for traditional compilers, which fail to
apply them for the aforementioned reasons. Conversely, optimizations often involve domain knowledge, from the
specialization and interprocedural optimization of library functions [15,16] to application-specific optimizations such
as algorithm selection [10]. Recently, the SPIRAL project [17] investigated a domain-specific extension of such
program generators, operating on a domain-specific language of digital signal processing formulas. This project is
one step forward to bridge the gap between application-specific generators and generic compiler-based approaches,
and to improve the portability of application performance.

Meta-programming optimizations for high-performance. Beyond application-specific generators, iterative optimiza-
tion techniques proved useful in driving complex transformations in traditional compilers. These techniques explore
the optimization search space given the feedback (e.g., timing) from the actual executions of the versions of the opti-
mized program, with the help of Operations Research algorithms [2], machine learning [10], and empirical experience
[4].

The traditional compiler frameworks might be too low-level however: they operate on program representations
such as hierarchical abstract syntax trees [18] or three address SSA form [19] in which the original algorithm is
hardly recognizable. They rely on fragile pattern-matching rules, suffer from the lack of natural encoding for semantic
equivalence (e.g., algebraic expressions), and resort to heuristic shortcuts in the exploration of (combinatorial) rewrite
trees [20].

We thus advocate for a higher-level framework allowing domain experts to design and express their transformations
at a level close to that of the original algorithm. The framework should be flexible enough to allow generation of
various candidate implementations (to be used later in the empirical search for the best implementation on a particular
platform). It should come with a set of built-in optimization strategies (loop tiling, loop fusion, etc.), which can be
applied in a platform-independent manner. It must offer some guarantees of correctness of the generated code (e.g.,
the absence of typing or other compilation errors).

This goal is similar to the one of telescoping languages [21,16], a compiler approach to reduce the overhead
of calling generic library functions and to enable aggressive interprocedural optimizations, by making the semantic
information about these libraries available to the compiler. Beyond libraries, similar ideas have been proposed for
domain-specific optimizations [6]. These works highlight the pressing need for researchers and developers in high-
performance computing to meta-program their optimizations in a portable fashion.

Alas, the meta-programming community has been slow in responding to these challenges. It has been mostly
interested in partial evaluation, specialization and simplification. These transformations are useful, in particular to
lower the abstraction penalty; but they are of a different nature than the optimizations (some of which are described in
this paper) needed to adapt an application to a complex architecture. In fact, research on generative programming and
multi-stage evaluation has not greatly influenced the design of high-performance applications and compilers. ATLAS
and most of the aforementioned projects are ad-hoc string-based program generators.

Contributions and outline of the paper. This work explores the potential of generative programming languages and
techniques for the high-performance computing expert, and, conversely, identifies significant open problems for
research in multi-stage programming. We show that complex optimizations can be implemented in a type-safe, purely
generative framework. We also show that peak performance is achievable through the careful combination of a high-
level, multi-stage language – MetaOCaml [22] – with low-level code generation techniques. Yet, the applicability of
generative approaches comes with caveats.

• On the “positive” side, we show that multi-stage programming offers major productivity improvements in the
semi-automatic/semi-manual optimization of performance-critical applications. Indeed, large performance gains
can be obtained without more general reflective meta-programming (introspection and rewriting). We illustrate
these benefits by showing how to achieve competitive results with state-of-the-art linear algebra routines.

• On the “negative” side, we rediscover an intrinsic limitation of multi-stage evaluation when attempting to mimic
a few key transformations in a purely generative style or when composing transformations. This limitation is

28 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

a consequence of the opaqueness of generated code, and leads to a tendency to factor program generators into
small combinators. This is no problem when the sequence of optimizations is short, but the decomposition
quickly becomes unnatural (for application programmers) when dealing with more complex or multi-application
generators. We illustrate this limitation by studying loop unrolling and strip-mining combinators. We also identify
some weaknesses specific to type-safe multi-stage evaluation. In most cases, we show that these weaknesses are
no fundamental limitations, but reduce the gains in programmer productivity, or make the approach accessible to
functional programming or compilation experts only.

• From these mixed results, we explore possible improvements and motivate further research, using MetaOCaml
as a reference multi-stage language. We outline a research direction to eliminate abstraction overhead combining
high-level and type-safe multi-stage programming with an embedded back-end generator of imperative code. This
approach is similar to offshoring [23] and allows us to implement a code generator for matrix–matrix product that
equals the performance of the best library implementations.

Section 2 introduces typical optimizing transformations in high-performance computing, presents possible
MetaOCaml implementations, and discusses their trade-offs. Section 3 takes a larger, extended example – matrix–
matrix product – and a more complex set of transformations, typical of the ATLAS library generator. To achieve
performance competitive with ATLAS, Section 4 describes a simple set of combinators to eliminate abstraction
penalty and generate C code from MetaOCaml with strong safety guarantees.

2. Generative strategies for loop transformations

Program transformations for high performance principally target regular loop nests operating over arrays. Most
of them have been defined for an imperative, intraprocedural setting. Although more and more interprocedural
analyses are integrated into modern compilers, few interprocedural extensions of these loop transformations have been
proposed [16]. These advanced optimizations often fail to be applied by the compiler, if at all implemented, and some
important optimizations would require too much domain-specific knowledge or miss important hidden information
(in libraries or input data structure) [16].

2.1. Choosing a purely generative approach

From a compiler perspective, there seem to be two means to improve the situation: either the programmer must be
given a way to teach the compiler new analyses and optimizations, how to drive them, and possibly when to apply them
(overriding static analysis) [24], or the programmer must implement a generator for a class of programs to produce
optimized code automatically [6]. The trend in high-performance computing is massively in favor of the second
direction, putting meta-programming techniques at the cornerstone of the design of industrial-strength libraries [1,
14,17].

Very close to our work, the TaskGraph active library [25] provides multi-stage evaluation and loop transformation
support for adaptive optimization of high-performance codes (numerical and image processing, in particular). We
share similar goals with this work, but we impose an additional constraint on the meta-programming that may occur
during program generation: we aim for a purely generative approach, i.e., the generated code is treated as a black box
and cannot be examined, let alone optimized further, whereas the TaskGraph library implements loop transformations
of an abstract code representation, embedding a full restructuring compiler in the generator, where we only require
back-end code generation. In addition, our purely generative approach avoids pattern mismatches that are likely to
occur on the TaskGraph intermediate representation [25].

More fundamentally, static typing is critical for program debugging and verification: it offers correctness guarantees
(e.g., the generated code is free from compilation errors), and lets the compiler report errors when processing the
generator rather than the generated code. Static typing and type inference are available for purely generative languages
but seem hard to extend to reflective meta-programming [26]. It is also important for a program manipulation language
to support equational reasoning, hence to facilitate the design of advanced analyses and optimizations [26].

For these practical and fundamental reasons, we choose to stick with a purely generative framework throughout
the paper. The main goal is to understand the impact of this choice on expressiveness and programmer productivity,
in the context of program manipulations for high-performance computing.

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 29

2.2. Primitive transformations

let rec full_unroll lb ub body =
if lb>ub then .< () >.
else if lb=ub then body .< lb >.
else .< begin .~(body .< lb >.); .~(full_unroll (lb+1) ub body) end >.

val full_unroll : int -> int
-> ((’a, int) code -> (’b, unit) code) -> (’b, unit) code = <fun>

let a = Array.make 100 0
let body = fun i -> .< a.(.~i) <- .~i >.
let block = full_unroll 0 3 body

block

.< begin a.(0) <- 0; a.(1) <- 1; a.(2) <- 2; a.(3) <- 3 end >.

.! block
a

- : int array = [|0; 1; 2; 3|]

Fig. 3. Full unrolling example. We recall the basic syntax of MetaOCaml: if expression is an expression of some type t, .< expression
>. is a code value of the type (’a,t) code; the type parameter ’a is explained in [27,28]. The notation .~expression used within code
brackets .< >. is an escape: the expression is evaluated at the generation stage and its result, which must be a code value, is spliced in place
of the escape. Code values can be printed by MetaOCaml. We can run code values (e.g., execute the corresponding code) using the .! notation.
The vertical bars on the left mark the output of the MetaOcaml top-level. For clarity, we hide the comment (* cross-stage persistent
value *) in the MetaOCaml’s output; cross-stage persistent values are described in [22].

Consider a simple example: loop unrolling. This transformation – also called partial loop unrolling – can be
decomposed into a bound and stride recomputation step and an iterated body instantiation step. The second step is
called full unrolling and is a straightforward application of multi-stage evaluation. The code in Fig. 3 is a recursive
multi-stage implementation of full loop unrolling; body is a function whose single argument is the value of the loop
counter for the loop being unrolled, and lb and ub are the loop bounds. To enable substitution with an arbitrary
expression, notice argument i is a code expression rather than a plain integer. Although quite simple, implementing
this transformation has two important caveats.

(1) The right-hand side of the following statement is a code expression parameterized by i (which is a code value):
let body = fun i -> .< a.(.~i) <- .~i >.

Such parameterized code expressions are important for specialization (or versioning)1; partial application allows
for several generation steps with multiple specializations.

(2) The arguments of full_unroll carry structured information (loop bounds and body), as opposed to its “flat”
return value (code expression). Since code values are treated as black boxes, they can only be combined by splicing
them – with no adjustments – in a larger code value. Thus it will not be easy to compose full_unroll with
other generation functions implementing further transformation steps.

The second issue highlights a fundamental problem with program generation, when code expressions produced by
a program generator may not evolve beyond the predefined set of arguments of a function or the predefined escape
points in the expression. Many optimizations built of sequences of simpler transformations cannot be implemented
as a composition of generators; in other words changing a transformation sequence may incur much more work than
modifying some ordered composition of generator functions. This is a major difficulty since building transformation
sequences is key to practical optimization strategies for high performance.

However, this is not the end of the road for our study, since there are alternatives to function composition to reuse
the code of primitive generators. For example, to achieve partial unrolling, we only have to convert the original loop
bounds into adjusted bounds with a strided interval, then we can call full_unroll to iterate body instantiations
over this interval; see Fig. 4. Section 2.3 will discuss some practical means to reuse code generators despite the
difficulty to compose them.

1 No free variable may occur in code expressions.

30 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

let partial_unroll lb ub factor body =
let number = (ub-lb+1)/factor in
let bound = number*factor in

.< begin
for ii = 0 to number-1 do

.~(full_unroll 0 (factor-1) (fun i -> body .< ii*factor+lb + .~i >.))
done;
for i = bound+lb to ub do

.~(body .< i >.)
done

end >.

val partial_unroll : int -> int -> int
-> ((’a, int) code -> (’a, unit) code) -> (’a, unit) code = <fun>

let body = fun i -> .< a.(.~i) <- .~i >. in partial_unroll 1 14 4 body

.< begin
for ii_2 = 0 to (3 - 1) do
begin

a.((ii_2*4)+1) + 0 <- ((ii_2*4)+1) + 0; a.((ii_2*4)+1) + 1 <- ((ii_2*4)+1) + 1;
a.((ii_2*4)+1) + 2 <- ((ii_2*4)+1) + 2; a.((ii_2*4)+1) + 3 <- ((ii_2*4)+1) + 3

end
done;
for i_1 = (12 + 1) to 14 do
a.((i_1) <- i_1

done end >.

Fig. 4. Partial unrolling.

Fig. 5. Optimizing galgel (base 171 s).

2.3. Sequences of transformations

Notice the previous example could be a good advocate for multi-stage evaluation. However, unrolling does not
cause serious compilation problems today (beyond choosing when and how much to unroll).

Fig. 5 describes a real optimization sequence for the galgel SPEC CPU2000 benchmark [29] (borrowed from
[4]). This sequence of 23 transformations on the same program region (a complex loop nest) was manually applied,
following an optimization methodology for feedback-directed optimization [4]. The experimental platform is an HP
AlphaServer ES45, 1 GHz Alpha 21264C EV68 with 8 MB L2 cache. Each analysis and transformation phase is
depicted as a gray box, showing the time difference when executing the full benchmark (in seconds, a negative number
is a performance improvement); the base execution time for the benchmark is 171 s. This sequence is out of reach of
current compiler technology. Although particularly complex, it is representative of real optimizations performed by
some (rare) compilers [30] and some (courageous) programmers [4]. Beyond compositionality, this example also
shows how important are extensibility (provisions for implementing new transformations) and debugging support
(static and/or generation-time and/or dynamic).

Simpler example. Fig. 6 shows a shorter example where complex optimization sequences are necessary: 4 classical
loop transformations convert the two simple loop nests at the top of the figure into the bloated code fragment below
(partially shown). These 4 loop transformations are, in application order, loop interchange, loop fusion applied twice,
and software pipelining or shifting [31]. Multi-stage evaluation may clearly help the programmer to write a template
for the code below, lifting several parameters and generation phases to automatically customize the code for a target
architecture. Unfortunately, much of the code in this template turns out too specialized and so cannot be reused in
other optimization templates.

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 31

Original nests.

for j = 1 to n do
for i = 1 to m do
a.(i) <- a.(i) + b.(i).(j) * c.(j)

done
done;
for k = 1 to m do

for l = 1 to n do
d.(k) <- d.(k) + e.(l).(k) * c.(l)

done
done

After 4 loop transformations (interchange, fusion, fusion, shifting).

let mn = min(m-4, n) in
for x = 1 to mn do
a.(1) <- a.(1) + b.(1).(x) * c.(x);
a.(2) <- a.(2) + b.(2).(x) * c.(x);
a.(3) <- a.(3) + b.(3).(x) * c.(x);
a.(4) <- a.(4) + b.(4).(x) * c.(x);
for y = 1 to mn do

a.(y+4) <- a.(y+4) + b.(y+4).(x) * c.(x);
d.(x) <- d.(x) + e.(y).(x) * c.(y)

done;
d.(x) <- d.(x) + e.(mn-3).(x) * c.(mn-3);
d.(x) <- d.(x) + e.(mn-2).(x) * c.(mn-2);
d.(x) <- d.(x) + e.(mn-1).(x) * c.(mn-1);
d.(x) <- d.(x) + e.(mn).(x) * c.(mn);
for y = mn+1 to m-4 do

a.(y+4) <- a.(y+4) + b.(y+4).(x) * c.(x);
d.(y) <- d.(y) + e.(y).(x) * c.(y)

done;
d.(m-3) <- d.(m-3) + e.(mn-3).(x) * c.(mn-3);
d.(m-2) <- d.(m-2) + e.(mn-2).(x) * c.(mn-2);
d.(m-1) <- d.(m-1) + e.(mn-1).(x) * c.(mn-1);
d.(m) <- d.(m) + e.(mn).(x) * c.(mn)

done;
for x = mn+1 to n do
for y = 1 to m-4 do

...

Fig. 6. Sequence of loop transformations.

Overall, the lack of reusability does limit the applicability of multi-stage evaluation for advanced program
transformations. Indeed, generative approaches will only be accepted if they allow programmers to reuse and quickly
adapt their generator from one application to another.

There are of course well known solutions to this problem: code reuse and portability can be achieved using an
abstract intermediate representation. Higher order skeletons are interesting in that respect: they have been used to
define and tune implementation schema for parallel divide and conquer skeletons [32], to build a code generator and
compiler (HDC) for such schema [33], and recently to build such a code generator using multi-stage programming
only [34]. In a more general setting, monadic program composition can simulate operations on an abstract intermediate
representation with some cost in readability and performance [35]. Alternatively, domain-specific languages may
combine the advantages of both, see e.g., [36,17] and the survey by Consel in [6].

Composition of generators. The loop unrolling example shows that the design of a complex code generator from
primitive ones is not straightforward: code expressions produced by a generator are black boxes that may not be
subject to further optimizations, which, as Fig. 6 shows, are often necessary. Solutions based on abstract syntaxes
and their impact on productivity will be studied later in the paper. Let us first study this limitation on loop unrolling
again. We recall that the classical strip-mining transformation consists in striping a loop into a number of consecutive
blocks of a constant number of iterations, effectively resulting in two nested loops, the outer one iterating on blocks
and the inner one iterating within each block. Partial loop unrolling can be decomposed into strip-mining and full

32 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

let strip_mine lb ub factor body =
let number = (ub-lb+1)/factor in

.< begin
for ii = 0 to number-1 do

for i = 0 to factor-1 do
.~(body .< ii*factor+lb+i >.)

done
done;
for i = number*factor+lb to ub do

.~(body .< i >.)
done

end >.

val strip_mine : int -> int -> int
-> ((’a, int) code -> (’a, ’b) code) -> (’a, unit) code = <fun>

let body = fun i -> .< a.(.~i) <- .~i >. in
strip_mine 1 14 4 body

.< begin
for ii_8 = 0 to (3 - 1) do
for i_9 = 0 to (4 - 1) do

a.(((ii_8 * 4) + 1) + i_9) <- ((ii_8 * 4) + 1) + i_9
done

done;
for i_7 = (12 + 1) to 14 do
a.(i_7) <- i_7

done end >.

Fig. 7. Strip-mining.

unrolling of the inner strip-mined loop; we may thus implement the strip-mine generator shown in Fig. 7, hoping
that some composition mechanism will allow us to define partial unrolling from strip_mine and full_unroll.
Unfortunately, this straightforward approach does not work because full_unroll does not operate on a closed
code expression but on a pair of integer arguments (the bounds) and a function on code expressions (the body).

Now, the higher-order generators strip_mine and partial_unroll look very similar (see Fig. 7): let aside
the recursive implementation of full_unroll, partial unrolling seems almost like a lifted version of strip-mining
where the code expression has been extended from the loop body to the whole inner loop. Based on these similarities, it
is indeed possible to reuse some code, by factoring the common template of strip_mine and partial_unroll.
This is the purpose of the generalized strip-mining generator in Fig. 8. Thanks to the new g_strip_mine generator,
it is easy to implement both the plain strip-mining and partial unrolling, by composition; see Fig. 8 again. It is even
possible to chain multiple strip-mining and unrolling steps, with partial applications of g_strip_mine.

Beyond composition: code reuse. This brings us to the most important question in our evaluation of generative
programming. Function composition is the most natural means to build sequences of loop transformations, yet it is not
applicable to most of our generators. But is it the only way to achieve our goal? Since we are primarily interested in
productivity, we should consider the wider concept of generator code reuse. To overcome the fundamental asymmetry
between the structured arguments of generator functions and the flat code expressions they produce, one way is to try
to generalize the g_strip_mine higher-order generator – also called combinator – approach. Indeed, when the set
of transformations to be composed is known for a given application domain, one may aim for a domain-specific set of
combinators, where each of those capture a core generative construct: e.g., skeleton, control or data structure. In other
words, this is the approach of defining generators of code generators and combining them.

This approach requires programming in continuation-passing (or monadic) style, delaying the generation of code
expressions to the very last composition of higher-order generators [37,38]. Also, our intuition is that the larger and
more expressive the set of transformations, the less semantically rich the associated set of combinators, hence the less
productivity gains for the domain developer. This law of diminishing returns will be best illustrated on a real example
in the next section, when designing a code generator for matrix–matrix product.

Alternatively, domain-specific generators can be built from primitive code combinators that operate on a suitable
intermediate representation. This approach maximizes reuse between generators across multiple applications; e.g.,
one could easily write a generic intermediate representation to let an expert programmer design all generators for all

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 33

let g_strip_mine g_loop lb ub factor body =
let number = (ub-lb+1)/factor in
.<

begin
for ii = 0 to number-1 do
.~(g_loop 0 (factor-1)

(fun i-> (body .< ii*factor+lb+ .~i >.)))
done;
for i = number*factor+lb to ub do

.~(body .< i >.)
done

end
>.

let g_loop_gen lw ub body =
.< for i = lw to ub do .~(body .< i >.) done >.

(* Plain strip-mining *)

let strip_mine = g_strip_mine g_loop_gen
(* Example *)

strip_mine 1 14 4 body

(* Partial unrolling *)

let partial_unroll = g_strip_mine full_unroll
(* Example *)

partial_unroll 1 14 4 body

Fig. 8. Factoring strip-mining and unrolling.

BLAS routines. Unfortunately, this approach also looks very much like the implementation of a compiler for a domain-
specific language, a daunting task with low productivity for the programmer. Yet one may expect many benefits
from domain-specific knowledge, from the static checking of MetaOCaml, and from the support of polymorphic and
functional code expressions. Furthermore, building an abstract intermediate representation for loop transformations
may be as simple as a polyvariant tree of code expressions and loop triplets (bounds and stride).

After carrying out this survey, we come to the conclusion that, although theoretically sufficient, a multi-stage
programming approach relying on abstract intermediate representations would hardly be satisfactory for most
programmers. Indeed, the effort to master the language may not be worth its safety and abstraction. In addition,
given the complexity and variety of program transformations for high-performance computing, some implementation
errors may not even be avoided by such an approach (including array dependences). The next section develops our
argumentation, proposing alternative ways to improve compositionality.

2.4. Alternative ideas

The polyhedral model has been proposed to represent loop nests and loop transformations in a unified fashion
[39–41]. Although constrained by regularity assumptions on control structures, it is applicable to many loop nests [42]
in scientific applications and captures loop-specific information as systems of affine inequalities. Recent advances in
polyhedral code generation [43] and a new approach to interpret transformation sequences as compositions of affine
functions [9] fit very well with our search for a generative and compositional optimization framework. Fortunately,
there exists a powerful OCaml interface [44] to the two most effective libraries to operate on polyhedra [45–47].
Together with multi-stage evaluation, it seems very easy and efficient to design a polyhedral code generator and to
couple it with lower-level back-end optimizations, including scalar promotion and instruction scheduling. The use
of the OCaml language should also facilitate the implementation of the symbolic legality-checking and profitability
analyses involved in polyhedral techniques.

Besides the polyhedral model, alternative ways to achieve better compositionality would include some form of
reification (to further transform closed code expressions). This may take the form of an extension of OCaml’s pattern-
matching construct, with type-safe term-rewriting rules (type-invariant substitution, polymorphic type specialization,
etc.). We believe it is unlikely that a general-purpose, user-extensible transformation framework can be built with
multi-stage evaluation as the only meta-programming primitive. Allowing some user control on the generated code is
thus a pragmatic solution to consider. The ability to post-process generated code with pattern-based substitution is a

34 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

powerful tool, yet transformations operating at an earlier stage are undoubtedly more elegant, especially when they
are conducted at an abstract level exposing more algebraic properties of the transformations themselves — like the
polyhedral model.

3. Generative implementation of complex optimizations

To experiment with a realistic example, we study the Automatically Tuned Linear Algebra Software (ATLAS)
[1], a state-of-the-art, highly optimized library generator for linear algebra operations. It is composed of tens of
parameterized code emitters for all the BLAS routines (the standard set of vector and matrix operations), with an
empirical driver to automatically tune the parameters for each target architecture. We focus on the ATLAS code
generator for matrix–matrix product [1,13] (see file emit.c in DGEMM).

3.1. Revisiting a custom generator

Fig. 9 shows a pseudo-code for the “generative” matrix product in an OCaml-like syntax. In ATLAS, the generator
spans more than 3500 lines of C, it is cluttered with printfs, obscure index computations, and string substitutions.
For the sake of clarity, our pseudo-code and the following experiments operate on integers, whereas DGEMM operates
on double-precision floats.

The first nest, executed by the generator, computes indirection arrays to build the names of all temporary scalar
variables in the innermost computation block. The four nested loops on ii, jj, i and j implement the tiled (a.k.a.
blocked) matrix product, with a square tile of size B. These tiles are further decomposed into smaller blocks of size
MU and NU; the loops iterating on these blocks are fully unrolled, and all temporary results stored into scalar variables.
In a first part, values of the result array c are loaded in the registers named c_m_n. The second part loads one row of
a and one column of b into the set of registers a_m and b_n, then operates on these registers to compute partial sums
for this pair of rows and columns. Loads are decoupled from the actual computations, and additions are decoupled
from multiplications, to hide the latency of the L2 cache and of the multiplication. In the third part, the results are
stored back into array c.

Indirection arrays i1 and i2 hold the automatically generated names for a large collection of scalar variables;
these are working arrays holding the precomputed values for �h/NU� and h mod NU for all 0 ≤ h < MU× NU. Fig. 9
is a template rather than a real code: the strange syntax t_i1.(m)_i2.(m) represents scalar variables which look
like t_5_7 when the template is expanded with i1.(m) = 5 and i2.(m) = 7. The inner loops on m and n are
fully unrolled and operate on these scalar variables.

Starting from the three nested loops of the natural matrix product algorithm, ATLAS applies four transformations
to obtain the code in Fig. 9. One of those is loop unrolling and is a well known application of multi-stage evaluation.
The three other transformations are more original.

Loop tiling. The outer loops of the matrix product are expanded to compute the blocked product [31]. This locality-
enhancing transformation is a sequence of strip-mining (making two nested loops out of one) and loop
interchange.

None of these transformations makes much use of multi-stage evaluation. It is possible to implement
bound and stride operations and loop generation for strip-mining in the same way as for partial unrolling, but
this does not compose with loop interchange at the code expression level. Instead, we have to write an ad-hoc
generator for the tiled template of the matrix product. We still get the benefits of typed code expressions
instead of strings, but we cannot easily reuse the loop tiling code for further applications of the technique on
other loop nests.

Scalar promotion. After a second tiling step, the innermost loops are fully unrolled (this is also called unroll and
jam [31]) and array accesses in the large resulting blocks are promoted to scalars to enable register reuse (the
whole transformation is called register tiling [31]).

This transformation should definitely fit a generative framework since it falls back to straightforward code
substitution. However, one may not explicitly craft new variable names in MetaOCaml, since identifiers in
let or fun bindings are not first-class citizens: let .~name = ... is not a valid syntax. We know two
methods to overcome this limitation.

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 35

(* executed by the generator *)

h := 0;
for m=0 to MU-1 do

for n=0 to NU-1 do
i1.(h) <- m; i2.(h) <- n;
h := !h+1

done
done

(* Template of the generated code *)

for ii=0 to N-1 step B do
for jj=0 to M-1 step B do
for i=ii to ii+B-NU step NU do

for j=jj to jj+B-MU step MU do
(* Two fully unrolled loops to load the values from matrix block *)

(* c[i..i+MU-1][j..j+NU-1] into promoted scalar variables c_m_n *)

for m=0 to MU-1 do
for n=0 to NU-1 do
c_m_n := c.(i+m).(j+n)

done
done;
for k=0 to B-1 do

(* All fully unrolled loops to load one pair of rows and columns of matrices a and b *)

(* then compute their dot product in a pipelined fashion *)

for m=0 to MU-1 do
a_m := a.(i+m).(k)

done;
for n=0 to NU-1 do
b_n := b.(k).(j+n)

done;
for m=0 to latency-1 do
t_i1.(m)_i2.(m) := !a_i1.(m) * !b_i2.(m)

done;
for m=0 to MU*NU-latency-1 do
c_i1.(m)_i2.(m) := !c_i1.(m)_i2.(m) + !t_i1.(m)_i2.(m);
n := m + latency;
t_i1.(n)_i2.(n) := !a_i1.(n) * !b_i2.(n)

done;
for m=MU*NU-latency to MU*NU-1 do
c_i1.(m)_i2.(m) := !c_i1.(m)_i2.(m) + !t_i1.(m)_i2.(m)

done
done;
(* Two fully unrolled loops to store the values from scalars *)

(* c_m_n back into matrix block c[i..i+MU-1][j..j+NU-1] *)

for m=0 to MU-1 do
for n=0 to NU-1 do
c.(i+m).(j+n) <- !c_m_n

done
done

done
(* Postlude... *)

done
(* Postlude... *)

done
(* Postlude... *)

done
(* Postlude... *)

Fig. 9. Simplified matrix product template.

The first method [37,38] follows a continuation-passing style and assumes the ability to bind intermediate
values to fresh variables – in other words, dynamic single assignment arrays [48] – defined only once during
the execution. Names for these fresh variables can be automatically generated by the MetaOCaml system.
This approach has the advantage of directly generating efficient scalar code (unboxed), but it has most of
the cons of programming with monads or with explicit continuations, an unnatural style for programmers of
high-performance numerical applications.2

2 Also syntactic sugar like the monadic do notation helps hide conceptual complexity [37,38].

36 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

let rec makeCodeRefs n =
if n = 0 then []
else let ref0 = ref 0 in

(.< ref0 >.) :: makeCodeRefs (n-1)

val makeCodeRefs : int -> (’a, int ref) code list

let dynamicFor low high step f =
.<

let i = ref .~low in
while !i <= .~high do

(.~f) (!i);
i := !i + .~step

done
>.

val dynamicFor : (’a, int) code -> (’a, int) code
-> (’a, int) code -> (’a, int -> ’b) code -> (’a, unit) code

let staticFor low high step f =
let rec gen a =

if a > high then .< () >.
else .<begin .~(f a); .~(gen (a+step)) end>.

in gen low

val staticFor : int -> int -> (int -> (’a, unit) code)
-> (’a, unit) code

Fig. 10. Array of code and loop iteration combinators.

The second method avoids continuation-passing style and does not require the fresh variable (or single
assignment) property, letting an individual scalar-promoted array element to be overwritten multiple times.3

It is indeed possible to simulate the mutable array elements of matrices c and t with a finite set of boxed
variables of type int ref. This solution may produce efficient code if the back-end OCaml compiler is
able to unbox the scalar references, otherwise it has no impact on the effective number of memory operations
performed over the matrix block (i.e., it does not perform any scalar promotion). An example and analysis of
this approach will be developed in the next section.

Instruction scheduling. To better hide memory and floating point operation latencies, some instructions in the
innermost loops are rescheduled in the loop body and possibly delayed or advanced by a few iterations.
This optimization improves the effects of the scheduling heuristic in the back-end compiler.

At first glance, instruction scheduling and software pipelining seem inadequate for generative languages.
Yet these optimizations fit in a typical scheduling strategy where instructions are extracted from a priority
list and generated in order. It is even possible to write a generic list-scheduler [49] on a dependence graph of
code expressions and to extend it to modulo-scheduling [50].

The next section describes the MetaOCaml implementation of a (shorter) type-safe generator for the computational
kernel in the tiled, scalar promoted and software-pipelined matrix product.

3.2. Type-safe generator for the matrix product

The greatest challenge is to use the meta-programming facilities of MetaOCaml to express the computationally
intensive kernel in a style in which array accesses are replaced by references to single variables. We expect that an
advanced native-code compiler for MetaOCaml will use processor registers for the reference variables.

We define the three combinators in Fig. 10.

• makeCodeRefs n generates a list of n code expressions, each one being a distinct value of type int ref
code, initialized to 0. Each expression will be given a name by the MetaOCaml system at run time.4 The first

3 Provided we can assure the legality of the scalar promotion transformation, i.e., the absence of any conflict.
4 The names for reference variables are constructed internally by the MetaOCaml system.

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 37

let makeCodeRefs’ n cont =
let rec loop n acc cont =
if n = 0
then cont acc
else .<let t = ref 0 in .~(loop (n-1) (.<t>. :: acc) cont)>.

in loop n [] cont

Fig. 11. Boxed scalars without cross-stage persistence.

let matmult mu nu latency =
let i1 = Array.make (mu*nu) 0
and i2 = Array.make (mu*nu) 0
and h = ref 0 in
for m=0 to mu-1 do

for n=0 to nu-1 do
i1.(!h) <- m;
i2.(!h) <- n;
h := !h+1

done
done;
let aregs = makeCodeRefs mu
and bregs = makeCodeRefs nu
and tregs = makeCodeRefs (mu*nu)
and cregs = makeCodeRefs (mu*nu) in
let aa i = nth aregs i
and bb i = nth bregs i
and tt i j = nth tregs (i*nu+j)
and cc i j = nth cregs (i*nu+j) in

.< fun a b c nn mm nb ->
.~(dynamicFor .<0>. .<nn-1>. .<nb>. .<fun ii ->

.~(dynamicFor .<0>. .<mm-1>. .<nb>. .<fun jj ->
.~(dynamicFor .<ii>. .<ii+nb-nu>. .<nu>. .<fun i ->
.~(dynamicFor .<jj>. .<jj+nb-mu>. .<mu>. .<fun j ->

(* Loop nest body in Fig. 14 *)

>.) >.) >.) >.) >.

val matmult : int -> int -> int ->
(’a, int array array -> int array array -> int array array ->
int -> int -> int -> int -> unit) code

Fig. 12. Scalar promotion – loop template.

implementation of makeCodeRefs relies on cross-stage persistence to make each code expression in the list
evaluate to a distinct reference at code generation time. This is achieved in binding a local variable ref0 to ref
0 before staging its value and appending the result to the list; appending .< ref 0 >. multiple times would not
achieve the expected result: every code expression would evaluate into a unique reference (at run-time). Fig. 11
provides an alternative, less intuitive implementation of makeCodeRefs: to avoid cross-stage persistence, distinct
references in the generated code are explicitly bound within the continuation function cont operating on them;
this implementation leads to more efficient code due to (current) inefficiencies in the implementation of cross-stage
persistence in MetaOCaml.

• dynamicFor creates a for-loop environment in which loops can have a stride greater than or equal to 1; it is
based on OCaml while-loops. dynamicFor takes the lower bound, upper bound, stride and a function which
abstracts the loop body in the iteration variable. All arguments of dynamicFor are code expressions since they
depend on dynamic values.

• staticFor expresses loops of stride one which are to be fully unrolled in the program. staticFor takes a
static lower and upper bound and a function for the loop body which maps the (static) index to the code expression
of the loop body.

Fig. 12 shows the scalar-promoted loop program for the matrix multiplication without the body of the loop nest. The
static arguments are the unrolling factors mu and nu, and the software pipeline latency. The dynamic arguments

38 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

(* ... *)

makeCodeRefs’ mu (fun aregs ->
makeCodeRefs’ nu (fun bregs ->
makeCodeRefs’ (mu*nu) (fun tregs ->
makeCodeRefs’ (mu*nu) (fun cregs ->
(* ... *)

Fig. 13. More efficient variant without cross-stage persistence.

.~(staticFor 0 (mu-1) 1 (fun m ->
staticFor 0 (nu-1) 1 (fun n ->

.< .~(cc m n) := c.(i+m).(j+n) >.)));
for k=0 to nb-1 do

.~(staticFor 0 (mu-1) 1 (fun m ->
.< .~(aa m) := a.(i+m).(k) >.));

.~(staticFor 0 (nu-1) 1 (fun n ->
.< .~(bb n) := b.(k).(j+n) >.));

.~(staticFor 0 (latency-1) 1 (fun m ->
.< .~(tt (i1.(m)) (i2.(m)))

:= !(.~(aa (i1.(m))))
* !(.~(bb (i2.(m)))) >.));

.~(staticFor 0 (mu*nu-latency-1) 1 (fun m -> let n = m+latency in
.< begin

.~(cc (i1.(m)) (i2.(m)))
:= !(.~(cc (i1.(m)) (i2.(m))))

+ !(.~(tt (i1.(m)) (i2.(m))));
.~(tt (i1.(n)) (i2.(n)))

:= !(.~(aa (i1.(n))))
* !(.~(bb (i2.(n))))

end >.));
.~(staticFor (mu*nu-latency) (mu*nu-1) 1 (fun m ->

.< .~(cc (i1.(m)) (i2.(m)))
:= !(.~(cc (i1.(m)) (i2.(m))))

+ !(.~(tt (i1.(m)) (i2.(m)))) >.))
done;
.~(staticFor 0 (mu-1) 1 (fun m ->

staticFor 0 (nu-1) 1 (fun n ->
.< c.(i+m).(j+n) <- !(.~(cc m n)) >.)))

Fig. 14. Scalar promotion – loop body.

are listed in the lambda-abstraction fun a b c nn mm nb. For each of the arrays a, b, t and c we apply the
makeCodeRefs combinator and define functions aa, bb, tt and cc which translate each access to an array into
the access to the appropriate register.

To use the improved variant of makeCodeRefs, it is sufficient to replace the four lines defining aregs, bregs,
tregs and cregs by the code in Fig. 13 (and close the 4 additional parentheses in the end). This does not really
complicate the code for a programmer familiar with continuation-passing style, but is not as straightforward as the
first, cross-stage persistent version (which was less efficient).

The loop nest body is depicted in Fig. 14. In a first part, values of the result array c are loaded in the register
set accessed by cc. The second part operates on these registers to compute partial sums for every pair of rows
in a and columns in b. In the third part, the results are stored back into the array. The second part is the most
interesting; it consists of a dynamic loop on k, whose body consists of sequences of statements, which are expressed
here in terms of our combinator staticFor. First, elements from the arrays a and b are loaded into the register
sets indexed through functions aa and bb, respectively. The temporary register set indexed through function tt
is filled with initial products, then expresses the pipelined dot product of every pair of rows and columns. At
last, when all products have been computed, the results are committed into to the register set indexed through
function cc.

Fig. 15 shows a snippet of the output of the matmult generator (the optimized version without cross-stage
persistence). One easily recognizes initialization code for temporary variables in the fully unrolled block of the matrix
product.

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 39

(* ... *)

let i_53 = (ref jj_49) in
while ((! i_53) <= ((jj_49 + mb_47) - 4)) do

((fun j_51 ->
begin
begin

t_40 := (c_43.(i_50 + 0)).(j_51 + 0);
t_39 := (c_43.(i_50 + 0)).(j_51 + 1);
t_38 := (c_43.(i_50 + 0)).(j_51 + 2);

(* ... *)

t_24 := ((! t_4) * (! t_8));
t_23 := ((! t_4) * (! t_7));
t_22 := ((! t_4) * (! t_6));

(* ... *)

Fig. 15. Scalar promotion – generated code.

3.3. Evaluation and feedback from the case study

The generated code expressions “look” very much like the output of the C code emitted by ATLAS. At this point,
we thus bet that, provided the abstraction penalty of executing of MetaOCaml programs can be eliminated, our type-
safe, purely generative implementation can match the performance of the custom, string-based generator of ATLAS.
The next section will show our early solution to completely eliminate the abstraction penalty and confirm this analysis.

Besides performance, an important issue is code readability and debugging. Static type-checking is a great asset for
developing robust meta-programs. Nevertheless, writing a generative template for the tiled, unrolled, scalar promoted
and pipelined matrix product can be a trial and error experience. The break-down of the library generator into primitive
parameterized combinators is hard to follow for high-performance computing experts used to an imperative flow of
algebraic operations. Readability is also hampered by the explicit management of complex index expressions.

We did not investigate interprocedural optimizations beyond classical applications of generative languages:
specialization, cloning and inlining. More complex transformations may even combine loop and function
transformations [16]. Yet addressing the issues raised by matrix–matrix products is a necessary step, and we believe
it will contribute to understand how to support interprocedural transformations.

We did not study the legality of the code transformations either. This issue is of course important, although not
as critical as in a stand-alone compiler where the decision of considering a program transformation has to be fully
automatic. If we were to check for array or scalar dependences [31] or to evaluate the global impact of data layout
transformations, the OCaml type system would be insufficient. Coupling a multi-stage generator with a static analysis
framework seems like an interesting research direction.

4. Safe meta-programming in C

There exist several two-stage evaluation extensions of the C language, from the standard C preprocessor to C++
template meta-programming [51,25], and to the ‘C project [52] based on a fast run-time code generation framework.
None of these tools provide the higher order functions on code expressions, cross-stage persistence and static checking
features of MetaOCaml.

It seems possible to design a multi-stage C extension with most of these features, probably with some restrictions
on the language constructs allowed at the higher stages, but that would be a long-term project. Using MetaOCaml as
a generator for C programs seems more pragmatic, at least as a research demonstrator:

(1) this may either involve an OCaml-to-C translator, taking benefit of the imperative features of OCaml to ease the
generation of efficient C code;

(2) or one may design a small preprocessor to embed C code fragments into the lower stages of a MetaOCaml
program, relying on a higher level abstract syntax built on code generation combinators [53] to assemble these
fragments.

The first solution is very cumbersome when aiming at the generation of stand-alone “C only” programs. It
is unlikely that such an OCaml-to-C translator can ever be designed, without simultaneously lacking robustness
and performance. In the context of multi-stage evaluation, offshoring is an original, very promising variant whose

40 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

development is conducted within MetaOCaml itself [23]. Instead of a pure translation, offshoring maps code
expressions in a subset of OCaml to a subset of C, providing a “homogeneous look” to the heterogeneous combination
of OCaml and C execution stages.

We plan to study this offshoring approach in the future, but currently follow on the second direction, for two
reasons:

Pure generative programming: using a higher-level abstract syntax avoids transforming generated code; offshoring
is also based on the expansion of OCaml constructs into imperative ones, yet this comes with a few
restrictions in expressiveness [23];

Expressiveness and control: an abstract syntax can provide full C expressiveness through the explicit combination
of higher-order generators of imperative code in MetaOCaml, eliminating all risks of hidden overhead
(operating on OCaml values, marshaling and unmarshaling) in the translation of high level constructs.

To avoid hidden overheads, we assume a complete separation of the two languages: the code generation part of it
is written in MetaOCaml, and does not exchange values with the target application written only in C.

The rest of this section outlines the main technical ideas of this approach and describes its application to the
matrix–matrix product example. It is not the main point of the paper, but a technical step to make the MetaOCaml
code generators eventually produce machine code without any abstraction penalty. The following abstract combinators
support a subset of the C language, and we cannot guarantee safety with respect to all syntactic and semantic
requirements of C compilation. Rather, these abstract combinators are useful to translate all imperative constructs
needed in our experiments into pure C code.

4.1. Safe generation of C code in OCaml

Our goal is to design a set of C code generation primitives such that an OCaml program calling these primitives
may only generate syntactically sound and type-safe C code. This goal is less ambitious than the offshoring approach
[23], since we do not aim at transparent communication of OCaml values to staged C code and vice versa (which
involves Marshaling in [23]). Instead, we assume complete separation of the OCaml and C worlds: only the code
generation part of is written in MetaOCaml, the target application being a C (or Fortran) only program.

Of course, instead of calling generation primitives explicitly, it would be natural to design a preprocessor converting
embedded C syntax into the proper OCaml declarations and calls. This does not bear any fundamental difficulty and
is left for future development work.

Our current solution does not aim at generating the whole C syntax (it has very limited support for function
declarations and calls), and it is not even guaranteed to be fully safe: it should rather be seen as a partially coercive
environment for generating safe code, with the ability for a hacker to circumvent the soundness restrictions, but
limiting the risk for bugs to be unwillingly introduced. A safer solution would necessarily include abstract types and
heavy usage of the module system [38].

Technical overview. Practically, we mirror the C grammar productions as generator functions operating on specific
polyvariant types to represent meaningful C fragments. Each C variable is embedded into an OCaml pair of a string
(its name) and a dummy value matching the type of the C variable; these variables can only be declared through the
explicit usage of OCaml variables. Figs. 16 and 17 show the main types, support functions and generation primitives
(for intraprocedural constructs only) and Fig. 18 shows a code generation example.

By design, the grammar productions guarantee syntactic correctness. It is more challenging to deal with the scope
of the C variable declarations and to enforce type-safety. We choose to represent a C block (the only placeholder
for variable declarations) as a function on an environment. Interestingly, environments both record the code being
generated and serve to delay the evaluation of the generation primitives until after the production of the surrounding
C block syntax. This continuation passing style is the key to the embedding of C scoping and typing rules into the
OCaml ones. For example, an integer variable x is simultaneously declared to OCaml and generated to C code when
evaluating

let x = gen_int_decl "x" env in continuation.
C code is appended to the environment env. Further assignments to x may call gen_assign directly, and read

references to x must first turn it into an “rvalue” through the lvrv function. Technically, we make use of partial

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 41

type environment = {
mutable txt:string; (* C text being produced *)

mutable cnt:int; (* Private counter for alpha-renaming *)

ind:string (* Pretty printing (indentation) *)

}
(* Some syntactic elements of C *)

type ’a c_rvalue = RValue of string * ’a
type ’a c_lvalue = LValue of string * ’a
type ’a c_loop = Cloop of (’a c_rvalue) * (bool c_rvalue)

* (’a c_rvalue) * (environment -> unit)

let get_nam var = match var with LValue (n, _) -> n
let get_def var = match var with LValue (_, d) -> d
let get_txt exp = match exp with RValue (t, _) -> t
let get_val exp = match exp with RValue (_, v) -> v
let get_init var = match var with Cloop (n, _, _, _) -> n
let get_cond var = match var with Cloop (_, c, _, _) -> c
let get_iter var = match var with Cloop (_, _, i, _) -> i
let get_body var = match var with Cloop (_, _, _, b) -> b

(* Support function: turns an lvalue into an rvalue *)

let lvrv var = RValue (get_nam var, get_def var)
(* Support function: build a loop object *)

let create_loop (init : ’a c_rvalue) (cond : bool c_rvalue)
(iterator : ’a c_rvalue) block =
Cloop (init, cond, iterator, block)

Fig. 16. Some support functions for C generation.

evaluation to η-reduce the environment argument when composing generators. This leads to a syntax closer to the
syntax tree these generators reflect, reducing the chances to corrupt the C code by mixing multiple environments.
A systematic application of this η-reduction approach incurs rewriting all generators as environment to environment
transformers; this is not a trivial task since many generators already have a return value whose type is key to the
enforcement of safe C code generation [38].

Finally, Fig. 20 also shows an interesting use of MetaOCaml to stage the generator templates themselves. Indeed,
the use of more than two stages is very convenient for heterogeneous program generation.

4.2. Generating new variable names

It is now easy to support the generation of new C variable names, without explicit usage of monads or continuation-
passing style [37], and avoiding the possible overhead of the solution proposed in Section 3.2. Fig. 19 shows a class
to operate on scalar-promoted arrays with generation-time array bound checking. Of course, this cannot be done
statically in general (although specific cases could be handled, with the proper encoding in the OCaml type system):
scalar promoting an array with out-of-bound accesses yields generation-time out-of-bound exceptions. For example,
a scalar-promoted array a is simultaneously declared to OCaml and generated as C code when evaluating let a =
new sp_int_array "a" 10, and it may further be referenced through the method idx.

4.3. Application to ATLAS

Fig. 20 highlights the most significant parts of the implementation of a generator template for the matrix–matrix
product. In this simple implementation, instruction scheduling is done by hand through an explicit split into three
separate unrolled loops. Also, empirical search strategies to drive the optimization (e.g., simulated annealing) are not
included.

Our generator produces a C code that closely resemble the C program generated by ATLAS. Provided with the
optimal parameters selected by the ATLAS empirical optimization driver, this C code is as good as the ATLAS
library itself and achieves more than 80% of the peak performance of the target processor. Fig. 21 gives the results
in percentage of the architecture’s peak performance for 100 × 100 matrices.5 These results were obtained for small

5 For this application, the peak performance is the absolute measure of the maximal number of multiplications per second that the target processor
can compute.

42 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

(* Output the declaration of <nam> to <env> *)

let gen_int_decl nam cont env =
let var = nam ˆ "_" ˆ (string_of_int env.cnt) in
let txt = sprintf "int %s;\n" var in

env.txt <- env.txt ˆ env.ind ˆ txt;
env.cnt <- env.cnt + 1;
cont (LValue (var, 0))

(* Output an instruction built of expression <exp> to <env> *)

let gen_inst exp env =
let txt = sprintf "%s;\n" (get_txt exp) in

env.txt <- env.txt ˆ env.ind ˆ txt

(* Output a block to <enclosing>

Notice <block> is a function on environments, this allows

to defer the evaluation of the generators in the block *)

let gen_block block e =
let env = {txt=e.ind ˆ "{\n"; cnt=0; ind=e.ind ˆ " "} in

block env;
env.txt <- env.txt ˆ e.ind ˆ "}\n\n";
e.txt <- e.txt ˆ env.txt

(* The following productions are self-explanatory *)

let gen_loop loop env =
env.txt <- env.ind ˆ "for (" ˆ (get_txt (get_init loop))

ˆ "; " ˆ (get_txt (get_cond loop)) ˆ "; "
ˆ (get_txt (get_iter loop)) ˆ ")\n";

gen_block (get_body loop) env
let gen_if_then_else (cond : bool c_rvalue) b_then b_else env =

env.txt <- env.txt ˆ "if (" ˆ (get_txt cond) ˆ ")\n";
gen_block b_then env;
env.txt <- env.txt ˆ "else\n";
gen_block b_else env

let gen_int_cst (cst : int) =
let txt = sprintf "%d" cst in RValue (txt, cst)

let gen_assign (var : ’a c_lvalue) (exp : ’a c_rvalue) =
let txt = sprintf "%s = %s" (get_nam var) (get_txt exp)
in RValue (txt, exp)

let gen_lt (op1 : ’a c_rvalue) (op2 : ’a c_rvalue) =
let txt = sprintf "(%s < %s)" (get_txt op1) (get_txt op2)
in RValue (txt, true)

let gen_add (op1 : ’a c_rvalue) (op2 : ’a c_rvalue) =
let txt = sprintf "(%s + %s)" (get_txt op1) (get_txt op2)
in RValue (txt, (get_val op1) + (get_val op2))

Fig. 17. Some generation primitives for C.

and medium matrix sizes (less than 192 × 192), on two different architectures: an AMD Athlon XP 2800+ (Barton)
at 2.08 GHz with 512 KB L2 cache, and a AMD Athlon 64 3400+ (ClawHammer) at 2.2 GHz with 1 MB L2 cache.
Notice a straightforward (three nested loops) implementation in native OCaml or C delivers less than 10% of the
peak performance. Performance on larger matrices is lower (60% of the peak) since our generator does not support
the necessary page-copying step when iterating across tiles, an important optimization to reduce the pressure on the
Translation Look-aside Buffer (TLB); there is no difficulty implementing this additional step in our framework. Last
but not least, our generator is 15× smaller than the ATLAS one, which has more than 3500 lines of intricate string-
manipulation C code. Our generator is also guaranteed against future-stages compilation errors, much more amenable
to future evolutions and lightweight maintenance, and slightly easier to understand.

4.4. Planned extensions

Currently, support for function declarations and calls is awkward. As for scalar types, specific generator functions
for each function type must be implemented. Three OCaml functions are needed per C function type: one for
the function prototype, one for the declaration and one for the call. These generators operate on a polyvariant
‘c_function type and enforce the proper prototype/declaration/call ordering of the C language (assuming the
generation of a single-file program). It is still unclear whether more polymorphism can be achieved, possibly requiring
one triple of generators for each given number of arguments only.

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 43

let global = {txt=""; cnt=0; ind=""};;

let generated_block =
let block env =
let x = gen_int_decl "x" env
and y = gen_int_decl "y" env in

gen_loop
(create_loop

(gen_assign x (gen_int_cst 1))
(gen_lt (lvrv x) (gen_int_cst 10))
(gen_assign x (gen_add (lvrv x) (gen_int_cst 1)))
(gen_loop

(create_loop
(gen_assign y (gen_int_cst 2))
(gen_lt (lvrv y) (gen_int_cst 20))
(gen_assign y (gen_add (lvrv y) (gen_int_cst 2)))
(fun env ->

let z = gen_int_decl "z" env in
gen_inst (gen_assign z (gen_int_cst 5)) env))))

env;
gen_inst

(gen_assign y (gen_add (lvrv x) (gen_int_cst 3)))
env;

gen_if_then_else (gen_lt (gen_int_cst 2) (lvrv x))
(gen_inst (gen_assign x (gen_int_cst 5)))
(gen_inst (gen_assign x (gen_int_cst 3)))
env

in gen_block block global

let _ =
print_string global.txt

{
int x_0;
int y_2;
for (x_0 = 1; (x_0 < 10); x_0 = (x_0 + 1))
{
for (y_2 = 2; (y_2 < 10); y_2 = (y_2 + 2))
{

int z_0;
z_0 = 5;

}
}
y_2 = (x_0 + 3);
if ((2 < x_0))
{
x_0 = 5;

}
else
{
x_0 = 3;

}
}

Fig. 18. Example of C generation.

The next step is of course to write the preprocessor for OCaml-embedded C code, to reduce the burden of writing
code like the block generator in Fig. 20.

5. Conclusion and perspectives

We revisited some important optimizations in the domain of high-performance computing, in the context of multi-
stage evaluation. Namely, we considered loop transformations like unrolling, tiling, and pipelining, and lower-level
transformations like scalar promotion and instruction scheduling. Since most advanced transformations are currently
applied manually by domain and optimization experts, the potential benefit of generative approaches is very high.
Indeed, several projects have followed ad-hoc string-based generation strategies to build adaptive libraries with self-
tuned computation kernels. We took one of these projects as a running example. We show that MetaOCaml is suitable
for the implementation of this kind of application-specific generators, with the benefit of its static checking properties

44 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

class sp_int_array = fun nam siz ini env ->
let _ = for i = 0 to siz-1 do

env.txt <- env.txt ˆ (sprintf "int %s_%d;\n" nam i)
done in

object
val name = nam
val size = siz
method idx x =

if (0 <= x & x < siz)
let var = sprintf "%s_%d" name x in

LValue (var, 0)
else
failwith "Illegal reference to " ˆ nam ˆ "[" ˆ x ˆ "]"

end

Fig. 19. Support for scalar-promotion.

(* ... *)

let q = new sp_int_array "q" 20 env
and r = new sp_int_array "r" 20 env
and t = new sp_int_array_array "t" 20 20 env

(* ... *)

in let block_mab1 it env =
gen_block

(gen_inst (gen_assign (t#idx i1.(it) i2.(it))
(gen_mul (lvrv (q#idx i1.(it))) (lvrv (r#idx i2.(it))))))

env

(* ... *)

in let multiply env =
for m = 0 to mu-1 do

for n = 0 to nu-1 do
i1.(!h) <- m;
i2.(!h) <- n;
h := !h + 1

done
done;
.! full_unroll 0 (latency - 1)

(fun i -> .< block_mab1 .~i env >.);
.! full_unroll 0 (mu * nu - latency - 1)

(fun i -> .< block_mab2 .~i env >.);
.! full_unroll (mu * nu - latency) (mu * nu - 1)

(fun i -> .< block_mab3 .~i env >.)

(* ... *)

Fig. 20. Revisited matrix product template.

Platform Native OCaml 3.09 GCC 4.1 Native MetaOCaml MetaOCaml → C
Athlon XP 3% 8% 30% 83%
Athlon 64 3% 9% 26% 81%

Fig. 21. Performance results.

to increase the productivity and portability of manual optimizations. But our results also show that severe reusability
and compositionality issues arise for complex optimizations, when multiple transformation steps are applied to a given
code fragment. In addition, we show that static type checking in MetaOCaml – in the current state of the system –
somewhat restricts the usage of important optimizations like the scalar promotion of arrays. Nevertheless, we also
show that on all our examples, this difficulty can be overcome in practice, at the price of additional coding complexity
– monadic style – or relying on a smarter back-end compiler — unboxing and offshoring.

Let us summarize our findings. Although multi-stage evaluation can be used in a simple and effective way
to implement program generators for portable high-performance computing applications, it does not relieve the

A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46 45

programmer from reimplementing the main generator parts for each target application. The only way to improve code
reuse in the generator is to base its design on a custom intermediate representation, which may be almost as convoluted
for application programmers as designing their own compiler. These academic results are confronted with a concrete
example, matrix–matrix product in the ATLAS adaptive library. We show that competitive performance is achievable
with a high-level, type-safe program generation approach, provided the domain expert has a good technical practice
with functional programming and with optimizations to lower the abstraction penalty. However, we were not able –
up to now – to fully eliminate the abstraction penalty with MetaOCaml alone. We had to resort to a heterogeneous
multi-stage approach to produce lower level C code. While bringing safe meta-programming to low-level imperative
programming, this approach also helps lifting some restrictions of MetaOCaml, but delays some safety checks to the
C compiler.

In the future, we plan to use MetaOCaml as an experimental framework to evaluate multi-stage evaluation and
possibly extend it to better support our adaptive optimization needs. We also wish to further investigate the potential of
the heterogeneous MetaOCaml/C generator, combining it with a preprocessor to embed actual C code in MetaOCaml.
Finally, to strengthen the safety guarantees of complex transformations, we are interested in coupling multi-stage
evaluation with more expressive static analyses of data dependences and pointer aliasing. These future works may
take place in a meta-programming extension for imperative languages, on top of LLVM [54], an advanced compiler
infrastructure for lifelong, adaptive program transformation.

Acknowledgments

This work is supported by exchange programs between the French CNRS, the University of Illinois, and the
German DAAD. We wish to thank Paul Feautrier, Vikram Adve, Marc Snir, Changhao Jiang, Patrick Meredith,
Xiaoming Li, Chris Lengauer and Walid Taha. We are also indebted to the anonymous reviewers for this special
issue and for the first MetaOCaml workshop; they pointed out important references and contributed elegant solutions
to some issues raised in the original version of this paper.

References

[1] R.C. Whaley, A. Petitet, J.J. Dongarra, Automated empirical optimizations of software and the ATLAS project, Parallel Comput. 27 (1–2)
(2001) 3–35.

[2] T. Kisuki, P. Knijnenburg, M. O’Boyle, H. Wijshoff, Iterative compilation in program optimization, in: Proc. CPC’10, Compilers for Parallel
Computers, 2000, pp. 35–44.

[3] K.D. Cooper, D. Subramanian, L. Torczon, Adaptive optimizing compilers for the 21st century, J. Supercomput. 23 (1) (2002) 7–22.
[4] D. Parello, O. Temam, A. Cohen, J.-M. Verdun, Towards a systematic, pragmatic and architecture-aware program optimization process for

complex processors, in: ACM Supercomputing’04, Pittsburgh, Pennsylvania, 2004, p. 15.
[5] A.J.C. Bik, M. Girkar, P.M. Grey, X. Tian, Automatic intra-register vectorization for the Intel architecture, Int. J. Parallel Programming 30

(2) (2002) 65–98.
[6] C. Lengauer, D. Batory, C. Consel, M. Odersky (Eds.), Domain-Specific Program Generation, in: LNCS, vol. 3016, Springer-Verlag, 2003.
[7] D.I. August, D.A. Connors, S.A. Mahlke, J.W. Sias, K.M. Crozier, B.-C. Cheng, P.R. Eaton, Q.B. Olaniran, W.-M. Hwu, Integrated predicated

and speculative execution in the IMPACT EPIC architecture, in: Proceedings of the 25th Intl. Symp. on Computer Architecture, 1998, pp.
227–237.

[8] L. Rauchwerger, D. Padua, The LRPD test: Speculative run-time parallelization of loops with privatization and reduction parallelization,
in: Compilers and Languages for Parallel and Distributed Computers, IEEE Trans. Parallel Distrib. Syst. 10 (2) (1999) 160–180 (special
issue).

[9] A. Cohen, S. Girbal, O. Temam, A polyhedral approach to ease the composition of program transformations, in: Euro-Par’04, in: LNCS, vol.
3149, Springer-Verlag, Pisa, Italy, 2004, pp. 292–303.

[10] X. Li, M.-J. Garzaran, D. Padua, A dynamically tuned sorting library, in: ACM Conf. on Code Generation and Optimization, CGO’04, San
Jose, CA, 2004, pp. 111–124.

[11] T. Veldhuizen, D. Gannon, Active libraries: Rethinking the roles of compilers and libraries, in: SIAM Workshop on Object Oriented Methods
for Inter-operable Scientific and Engineering Computing, 1998, pp. 21–23.

[12] M.D. Smith, Overcoming the challenges to feedback-directed optimization, in: ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization, 2000, pp. 1–11 (Keynote Talk).

[13] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, P. Wu, A comparison of empirical and
model-driven optimization, in: ACM Symp. on Programming Language Design and Implementation, PLDI’03, San Diego, CA, 2003, pp.
63–76.

[14] M. Frigo, S.G. Johnson, FFTW: An adaptive software architecture for the FFT, in: Proc. of the ICASSP Conf., vol. 3, 1998, pp. 1381–1384.

46 A. Cohen et al. / Science of Computer Programming 62 (2006) 25–46

[15] L. De Rose, D. Padua, Techniques for the translation of MATLAB programs into Fortran90, ACM Trans. Programming Languages Systems
21 (2) (1999) 286–323.

[16] A. Chauhan, K. Kennedy, Optimizing strategies for telescoping languages: Procedure strength reduction and procedure vectorization, in: ACM
Intl. Conf. on Supercomput., ICS’04, 2001, pp. 92–101.

[17] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua, M. Veloso, R.W. Johnson, SPIRAL: A generator for platform-adapted
libraries of signal processing algorithms, in: Automatic Performance Tuning, J. High Performance Computing and Applications 18 (1) (2004)
21–45 (special Issue).

[18] Open research compiler, http://ipf-orc.sourceforge.net .
[19] J. Merill, GENERIC and GIMPLE: A new tree representation for entire functions, in: Proceedings of the 2003 GCC Developers Summit,

2003, pp. 171–180. http://www.gccsummit.org/2003.
[20] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, N. Vasilache, Facilitating the search for compositions of program transformations, in:

ACM Intl. Conf. on Supercomputing, ICS’05, Boston, Massachusetts, 2005, pp. 151–160.
[21] K. Kennedy, Telescoping languages: A compiler strategy for implementation of high-level domain-specific programming systems, in: Proc.

Intl. Parallel and Distributed Processing Symposium, IPIPS’00, 2000, pp. 297–304.
[22] C. Calcagno, W. Taha, L. Huang, X. Leroy, Implementing multi-stage languages using ASTs, Gensym, and reflection, in: ACM

SIGPLAN/SIGSOFT Intl. Conf. Generative Programming and Component Engineering, GPCE’03, 2003, pp. 57–76.
[23] J. Ekhardt, R. Kaiabachev, E. Pašalić, K. Swadi, W. Taha, Implicitly heterogeneous multi-stage programming, in: ACM SIGPLAN/SIGSOFT

Intl. Conf. Generative Programming and Component Engineering, GPCE’05, in: LNCS, vol. 3676, 2005.
[24] D.J. Quinlan, M. Schordan, Q. Yi, B.R. de Supinski, Semantic-driven parallelization of loops operating on user-defined containers,

in: Workshop on Languages and Compilers for Parallel Computing, in: LNCS, vol. 2958, Springer-Verlag, 2003, pp. 524–538.
[25] O. Beckmann, A. Houghton, P.H.J. Kelly, M. Mellor, Run-time code generation in C++ as a foundation for domain-specific optimisation, in:

Proceedings of the 2003 Dagstuhl Workshop on Domain-Specific Program Generation, 2003.
[26] W. Taha, A sound reduction semantics for untyped CBN mutli-stage computation. or, the theory of MetaML is non-trival, in: Proc. of the

ACM workshop on Partial Evaluation and semantics-based Program Manipulation, PEPM’00, Boston, Massachusetts, 2000, pp. 34–43.
[27] W. Taha, M.F. Nielsen, Environment classifiers, in: ACM Symp. on Principles of Programming Languages, PoPL’03, 2003, pp. 26–37.
[28] C. Calcagno, E. Moggi, W. Taha, ML-like inference for classifiers, in: D. Schmidt (Ed.), European Symposium on Programming, ESOP,

in: LNCS, vol. 2986, Springer-Verlag, 2004, pp. 79–93.
[29] Standard performance evaluation corporation, http://www.spec.org.
[30] KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital UNIX, http://www.hp.com/techsevers/software/kap.html.
[31] R. Allen, K. Kennedy, Optimizing Compilers for Modern Architectures, Morgan and Kaufman, 2002.
[32] C.A. Herrmann, C. Lengauer, Parallelization of divide-and-conquer by translation to nested loops, J. Funct. Programming 9 (3) (1999)

279–310.
[33] C.A. Herrmann, C. Lengauer, HDC: A higher-order language for divide-and-conquer, Parallel Process. Lett. 10 (2-3) (2000) 239–250.
[34] C.A. Herrmann, Generating message-passing programs from abstract specifications by partial evaluation, Parallel Process. Lett. 15 (3) (2005)

305–320.
[35] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: ACM Symp. on Principles of Programming Languages,

PoPL’95, 1995, pp. 333–343.
[36] A. Van Deursen, P. Klint, J. Visser, Domain-specific languages: An annotated bibliography, ACM SIGPLAN Notices 35 (6) (2000) 26–36.
[37] O. Kiselyov, K.N. Swadi, W. Taha, A methodology for generating verified combinatorial circuits, in: Embedded Software Conf., EMSOFT’04,

Pisa, Italy, 2004, pp. 249–258.
[38] J. Carette, O. Kiselyov, Multi-stage programming with functors and monads: Eliminating abstraction overhead from generic code, in: ACM

SIGPLAN/SIGSOFT Intl. Conf. Generative Programming and Component Engineering, GPCE’05, in: LNCS, vol. 3676, 2005.
[39] P. Feautrier, Some efficient solutions to the affine scheduling problem, part II, multidimensional time, Int. J. Parallel Programming 21 (6)

(1992) 389–420. See also Part I, one dimensional time, 21(5):315–348.
[40] M.E. Wolf, Improving locality and parallelism in nested loops, Ph.D. Thesis, Stanford University, published as CSL-TR-92-538 (August

1992).
[41] W. Kelly, Optimization within a unified transformation framework, Tech. Rep. CS-TR-3725, University of Maryland, 1996.
[42] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, O. Temam, Putting polyhedral loop transformations to work, in: Workshop on Languages and

Compilers for Parallel Computing, LCPC’03, LNCS, College Station, Texas, 2003, pp. 23–30.
[43] C. Bastoul, Code generation in the polyhedral model is easier than you think, in: Parallel Architectures and Compilation Techniques, PACT’04,

Juan-les-Pins, 2004, pp. 7–16.
[44] P. Boulet, X. Redon, SPPoC: Symbolic parameterized polyhedral calculator, http://www.lifl.fr/west/sppoc.
[45] P. Feautrier, Parametric integer programming, RAIRO Recherche Opérationnelle 22 (1988) 243–268.
[46] V. Loechner, D. Wilde, Parameterized polyhedra and their vertices, Int. J. Parallel Programming 25 (6). http://icps.u-strasbg.fr/PolyLib.
[47] W. Pugh, A practical algorithm for exact array dependence analysis, Comm. ACM 35 (8) (1992) 27–47.
[48] P. Feautrier, Array expansion, in: ACM Intl. Conf. on Supercomputing, St. Malo, France, 1988, pp. 429–441.
[49] A. Darte, Y. Robert, F. Vivien, Scheduling and Automatic Parallelization, Birkhaser, Boston, 2000.
[50] J. Llosa, Swing modulo scheduling: A lifetime-sensitive approach, in: Parallel Architectures and Compilation Techniques, PACT’96, 1996,

pp. 80–87.
[51] T. Veldhuizen, Using C++ template metaprograms, C++ Report 7 (4) (1995) 36–43.
[52] M. Poletto, W.C. Hsieh, D.R. Engler, M.F. Kaashoek, ‘C and tcc: A language and compiler for dynamic code generation, ACM Trans.

Programming Languages Systems 21 (2) (1999) 324–369.
[53] D.A. Turner, A new implementation technique for applicative languages, Software – Practice and Experience 9 (1) (1979) 31–49.
[54] C. Lattner, V. Adve, LLVM: A compilation framework for lifelong program analysis & transformation, in: ACM Conf. on Code Generation

and Optimization, CGO’04, San Jose, CA, 2004, pp. 75–88.

http://ipf-orc.sourceforge.net
http://www.gccsummit.org/2003
http://www.spec.org
http://www.hp.com/techsevers/software/kap.html
http://www.lifl.fr/west/sppoc
http://icps.u-strasbg.fr/PolyLib

	In search of a program generator to implement generic transformations for high-performance computing
	Introduction and motivation
	Generative strategies for loop transformations
	Choosing a purely generative approach
	Primitive transformations
	Sequences of transformations
	Alternative ideas

	Generative implementation of complex optimizations
	Revisiting a custom generator
	Type-safe generator for the matrix product
	Evaluation and feedback from the case study

	Safe meta-programming in C
	Safe generation of C code in OCaml
	Generating new variable names
	Application to ATLAS
	Planned extensions

	Conclusion and perspectives
	Acknowledgments
	References

