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Abstract
Plasma fractals is a technique to generate random and realistic
clouds, textures and terrains – traditionally using recursive sub-
division. We demonstrate a new approach, based on iterative ex-
pansion. It gives a family of algorithms that includes the standard
square-diamond algorithm and offers various interesting ways of
extending it, and hence generating nicer pictures. The approach
came about from exploring plasma fractals from the point of view
of an array language (which we implemented as an embedded DSL
in OCaml) – that is, from the perspective of declaring whole image
transformations rather than fiddling with individual pixels.

1 Summary
Plasma fractals [Fournier et al. 1982] are widely used to simulate
clouds, generate textures and build height-maps for realistic ter-
rains.

We present a new approach to generating plasma fractals, gener-
alizing the standard square-diamond algorithm. The approach leads
to a family of algorithms which we have just started to explore.
It came about as we were contemplating realizations of plasma
fractals in an array language – the kind of language which dis-
courages fiddling with individual pixels and forces us to think of
transformations on images as a whole.

The bird-eye view afforded by array languages made us realize
that plasma fractals emerge from repeated noisy image expansion,
with appropriately scaled noise – in marked contrast with the
conventional view as recursive subdivision. Our algorithms are not
recursive but iterative.

Along with plasma fractals we demonstrate our array program-
ming language – in the spirit of APL but implemented as an em-
bedded DSL in OCaml and typed. Thanks to the rich host language,
we enjoy modularity, expressivity, standard library and powerful
abstractions while avoiding puzzling and error-prone behavior due
to implicit conversions and pervasive overloading typical of array
languages.

The complete, self-contained code is available at https://okmij.
org/ftp/image/ArrayL/.

2 Plasma Fractals as Recursive Subdivision
Conventionally, plasma fractals are presented as recursive subdivi-
sion, following [Miller 1986]. In the simplest midpoint displacement
algorithm, we start with the initially empty image of the target size
and seed its four corners: black circles in Fig. 1(a). Midpoints along
the sides (yellow circles in Fig. 1(b)) are filled with the averages of
the two closest corners – plus a random displacement. The center
point (Fig. 1(c)) is the average of the four corners, plus a random
displacement. As the result, the four sub-squares (Fig. 1(d)) have
their corners filled, and the procedure is recursively applied to them
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Figure 1.Midpoint displacement algorithm

(a) (b)

Figure 2. Expansion Algorithm

(with a scaled down random displacement) – until the entire image
is filled.

The square-diamond algorithm is an elaboration to avoid line
artifacts of the simple algorithm.

3 Plasma Fractal = Expansion + Noise
As we were pondering how to implement plasma fractals in an
array language (see §4) and avoid concerning ourselves with filling-
in of individual pixels, we have come across a new presentation.
Whereas the convention talks about recursive subdivision, we think
of progressive (iterative) enlargement.

We start with a 2×2 seed picture, Fig. 2(a), and expand it: Fig. 2(b).
The yellow circles represent ‘new pixels’, whose values are deter-
mined by resampling the original image, with the added random
noise. With bilinear interpolation as resampling, the side pixels
are the averages of their two side neighbors, and the middle is the
average of its four neighbors. The result is hence equivalent to (a
scaled down) Fig. 1(d). Repeating the expansion gives the image of
the target size.

Thinking in terms of images rather than pixels (as array lan-
guages encourage us to do [McIntyre 1991; Smillie 2005]), the noisy
expansion step is the standard image enlargement to which a noise
image is added. The enlargement (upsampling) can be represented
as a 2D-convolution. For bilinear interpolation upsampling, the
convolution kernel is the 2×2 array: is the outer product of [1; 1]/2
with itself. Interestingly, the square-diamond algorithm can also
be represented as the repeated scaling/convolution+noise, using a
particular convolution kernel. Fig. 3 shows sample plasma fractals
generated with bicubic interpolation upsampling – the new algo-
rithm that improves on square-diamond and produces images with
fewer artifacts.
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4 Array Language
What made the exploration of plasma fractals easier is an array lan-
guage – in our case, one embedded in OCaml. It gave a playground
to quickly try various algorithms and see their results.

Our language is greatly inspired by APL. Unlike APL, J, K, etc.,
however, it has the conventional programming language syntax
(actually that of OCaml): expressions may span as many lines as
needed to nicely display them, highlight their structure and attach
comments; one may locally name (sub)expressions for readability;
parsing/understanding requires less look-ahead.1 There are further,
less noticeable but just as important differences from APL: the flow
of data is left-to-right (as common in electrical engineering and
signal processing) rather than right-to-left. Not everything is an
array: there are also numbers, pairs, strings, booleans, and all other
OCaml data types. There are types. Implicit conversions, padding,
overloading, slicing are eliminated to minimize surprises and subtle
errors, especially due to typos. For example, a conversion from
int to float has to be notated explicitly, using OCaml’s standard
float_of_int. That may become cumbersome – but OCaml’s local
module open, local definitions and other abstractions help. The
whole OCaml and its libraries are available for syntax sweetening,
in the manner advocated in [Kiselyov 2019].

Still our language is an array language, distinguishing array
shape and contents, relying on compositions and array arithmetic;
tacit programming (a.k.a. point-free style) is also available, with
the set of common combinators. Our arrays are defined as

type (𝜄,𝛼) arr = Arr of 𝜄 ∗ (𝜄 → 𝛼)

literally as the combination of shape, or index domain (represented
by the type 𝜄) and content: the function from an index to an element.
For images, the index domain type is the pair of integers

type d2 = int ∗ int

and the shape is the pair of the largest row and column indices. In
this representation, operations on arrays are automatically fused
and copying is avoided. In fact, no arrays are allocated unless ex-
plicitly requested, by calling materialize2.

As an example, the noisy enlargement step of the plasma fractal
algorithm from §3 is implemented as

let noise (Arr (d,_)) = Arr (d, fun (i,j)→
if i land 1 = 0 && j land 1 = 0 then 0 else rand ())

let expander (scaler: ((d2,int) arr→ (d2,int) arr)) (nsf: float)
: (d2,int) arr→ (d2,int) arr =
map (fimul nsf) ▷ scaler ▷ fun m2 →
zip_with (+) m2 (noise m2) ▶ materialize2 0

where ▶ is left-to-right application and ▷ is left-to-right composi-
tion. The type annotations are optional and given for clarity. The
argument scaler is an enlargement function, such as bilinear, bicu-
bic or square-diamond convolutional upsampling. The argument
nsf is noise scaling related to the fractal dimension. For plasma
fractals, it should be around 1.1−2.2.

Fig. 3 (top) is the result of

let m0 = of_array [|4;4;4;4|] ▶ rho2 (2,2) in
m0 ▶ ntimes 8 (expander scale_twice_bc 1.2)

1APL parsing requires unlimited look-ahead (or, more precisely, look-behind, since
APL is parsed right-to-left): http://dfns.dyalog.com/n_parse.htm.

The bottom image on the figure is obtained with the nsf parameter
set to 2.0.

5 From Now On
The new family of plasma fractal algorithms is vast: any image
expansion algorithm2 instantly gives a plasma fractal algorithm.
We have just begun to explore this landscape.

Figure 3. Generated plasma fractals (resampling by bicubic inter-
polation)
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