
Transformational Semantics on a Tree

Bank

Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract. Recently introduced Transformational Semantics (TS) for-
malizes, restraints and makes rigorous the transformational approach
epitomized by QR and Transformational Grammars: deriving a meaning
(in the form of a logical formula or a logical form) by a series of transfor-
mations from a suitably abstract (tecto-) form of a sentence. Unlike QR,
each transformation in TS is rigorously and precisely defined, typed, and
deterministic. The restraints of TS and the sparsity of the choice points
(in the order of applying the deterministic transformation steps) help
derive negative predictions and control over-generation.
The rigorous nature of TS makes it easier to carry analyses mechani-
cally, by a computer. We report on such a mechanical, fully automatic
application of TS to a tree bank of FraCAS text entailment problems
(generalized quantifier section). Set-theoretic logical formulas derived by
TS as meanings for input sentences are submitted to an automatic first-
order theorem prover to decide entailment. A characteristic feature of
our approach is the exhaustive enumeration of quantifier and other such
ambiguities.
Overall TS proved just as capable as natural logic in inferences involving
a variety of generalized quantifiers. Still open is the problem of mechan-
ically dealing with bare plurals.

1 Introduction

We report on an automatic application of Transformational Seman-
tics (TS) [4, 5] to the FraCAS bank of textual inference problems
[2].

TS, in a word, is a rigorous, rigid and restrained version of the
familiar QR [3], well-expressing covert movements and other ‘logical
form’ transformations. A transformation from a (logical) abstract
form to a semantic set-theoretic formula is composed from several
steps. Each step, such as raising a single quantifier, is deterministic,
with no wiggle room. The order of the steps, on the other hand,
is non-deterministic. TS has been applied to quantifier ambiguity,

scoping islands and binding, crossover, topicalization, inverse linking,
and non-canonical coordination [4, 5].

Because TS is precisely specified, its transformations can be car-
ried out mechanically, by a computer. The current implementation
takes the form of a domain-specific language embedded in Haskell.
It was originally intended as a semantic theory design aid: to inter-
actively try various transformations, observe their results or failures.
This paper reports on a different, more real-life application: to fully
automatically derive meanings of tree bank sentences and their en-
tailments.

The application to the real-world tree bank is not as simple as it
may appear. The input is not a clean, abstract (tecto-grammatical)
formula; rather it is a Penn-treebank–like annotated tree. It proved
rather messy to transform the latter to the former. Another problem
is dealing with quantifier and other ambiguities. In TS, they man-
ifest as choices in the order of applying primitive transformation
steps. We resolve to systematically enumerate all possible choices,
hence, to expose all ambiguities licensed by TS. The final challenge
is expressing the meaning of various generalized quantifiers, modal
operators and intensional constructions as a first-order formula – so
to interface with an automatic theorem prover.

Section 2 describes the whole process in detail: the annotated
FraCAS and its annotations in §2.1; the conversion to the tecto-
grammatical form in §2.2; verifying (type-checking) the form in §2.3;
applying the Transformational Semantics to turn the form to the
logical formula in §2.4; and deciding the entailment in §2.5. The
conversion in §2.2 from an annotated tree to a (tecto-grammatical)
form suitable for semantic analyses is not particular to TS and can
be used independently, with other semantic theories. §3 details the
handling of generalized quantifiers like “several”, “many”, “few”,
“at least three” – in particular their representation in first-order
theories. §4 describes other challenges: definite descriptions and in-
tensional verbs like “want”. The challenges not yet overcome are
discussed in §5. We then present the results of applying the TS to
the generalized quantifier section of FraCaS.

The complete source code is available at http://okmij.org/

ftp/gengo/transformational-semantics/.

2 From a Sentence to an Entailment Decision

We illustrate the TS process of deriving the meaning formula (and
then, entailments) on a simple example, problem 049 from the Fra-
CaS textual inference problem set [2] (actually, from Bill MacCart-
ney’s modified and converted to XML set1):

A Swede won a Nobel prize.
Every Swede is a Scandinavian.
A Scandinavian won a Nobel prize.

The goal is to decide if the third sentence is entailed by the first two.

We chose this running example because it is so straightforward:
it lets us focus on the mechanics of the transformational framework
without getting distracted with theoretical semantic problems. The
problems are present, in abundance: see §§3-5.

2.1 Parsing

Fortunately, parsing is not our problem. We take as input not raw
text but a tree, annotated according to the Penn Historical Corpora
system2 (also known as the annotation system for the Penn-Helsinki
Parsed Corpus of Early Modern English). The FraCAS corpus in this
annotated form has been very kindly provided by Alastair Butler [1].
The first two sentences of problem 049 look as follows.

((IP-MAT (NP-SBJ (D A) (ADJ Swede))

(VBD won) (NP-OB1 (D a) (NPR Nobel) (N prize))

(PU .))

(ID 86_JSeM_beta_150530))

((IP-MAT (NP-SBJ (Q Every) (ADJ Swede))

(BEP is) (NP-OB1 (D a) (ADJ Scandinavian))

(PU .))

(ID 87_JSeM_beta_150530))

Fig. 1. The first two Problem 049 sentences in the tree bank form

1 http://www-nlp.stanford.edu/wcmac/downloads/fracas.xml
2 http://www.ling.upenn.edu/ppche/ppche-release-2016/annotation/index.

html

All words including punctuation are tagged with their part of
speech: N for singular common noun, NPR for singular proper noun,
VBD for verb in past tense, D for determiner, ADJ for adjective, Q
for quantifier, etc. Special words “be”, “do” and “have” have their
own tags, such as BEP for “be” in present tense. Significantly, the
syntactic structure is also annotated: e.g., subject noun phrases as
NP-SBJ and object noun phrases as NP-OB1. Phrasal structure,
however, is only partly annotated: either because the detailed brack-
eting is easily derivable or less practically useful, or because phrase
boundaries are difficult to determine. (This is the case for VP: even
in Modern English the attachment of verbal adjuncts is ambiguous).
Dropping all annotations gives the original sentence as it was.

The main attraction of using the Penn Historical annotated data
as input is that there is a wealth of such data available: not just for
Modern and Historical English but also for many other languages;
not just FraCAS but also the Bible, “Moby Dick”, newswires, and
many other texts [1]. These annotated sources have high quality.
This is a treasure trove of empirical material for TS to work on.

2.2 From the Treebank to the Abstract Form

The input to TS is a (tecto-grammatical) abstract form, to be de-
scribed in §2.3. Looking ahead, Fig. 2 shows the abstract form for
the first two sentences in Fig. 1.

cl (a_x (swede entity))

(won (a_y nobel_prize))

cl (every_x (swede entity))

(is_cn (scandinavian entity))

Fig. 2. Abstract-form terms

The first task hence is to convert FraCaS problems to this ab-
stract form. Starting from the treebank annotated data saves us
parsing – but not completely. The phrasal structure in treebank trees
is only partly exposed: the trees are generally rather flat. The trees
have to be pre-processed first to fill in the missing structural annota-
tions and make them binary branching. The preprocessing step also
removes punctuation and metadata and normalizes parts of speech
annotations eliminating irrelevant for semantic analyses distinctions.

The comparison of Figs. 1 and 2 hints that the conversion from
the former to the latter is messy. For example, the NP-SBJ branch in
Fig. 1 adjoins the ADJ "Swede" to a determiner. In the abstract form,
a determiner has the type N → NP and cannot take adjective as
the argument. Since “Swede” can also be a common noun (category
N), one could regard Fig. 1 as mis-annotated. Butler has suggested,
however, to assume that such phrases omit the trivial noun, ”entity”.
We have to put it in.

Thus the input annotated tree requires significant preprocessing:

– Normalize all strings to lower case and remove punctuation;
– Abstract away tense: replace both VBP and VBD tags (for present-

and past-tense verbs) with just VB;
– Insert the dummy N "entity" as explained earlier;
– Treat “a few”, “one of the”, etc. as atomic quantifiers: Q "afew";
– Take “The world’s greatest” to be the intensified “greatest” rather

than a possessive phrase per the original annotation;
– Regard abstract common nouns with the null article (e.g., “char-

ity”) as proper-name–like NPs;
– Treat the indefinite, D "a", as a quantifier Q "a";
– Collect noun clusters and mark them as a compound noun: e.g.,

"nobel_prize";
– In the same manner, turn idiomatic-like phrases such as “really

great” and “travel freely” into compounds ADJ "really_great"

and VB "travel_freely";
– Simple definite descriptions like “the world” and “the report”

function quite like proper nouns, so tag them as such (§4 discusses
definite descriptions in detail);

– Regard“There is NP” as “NP exists” and “There are NP” as
“Several NP exist”;

– Simplify subject relative clauses by removing traces;
– Collect all noun complements within an NP and introduce new

nodes nc (for singular common noun with a list of complements)
and ncs (for plural common noun). Unlike the original Penn His-
torical annotation tags, ours are in lowercase;

– Recognize copular clauses and tag them with cop;
– Regard “some” with a plural restrictor as “several”;
– Introduce nodes tv and tv-app for a transitive verb with an

argument, so to make the tree binary.

All these transformation steps are programmed as top-down macro-
tree transducers and applied in the order described. The Haskell
code3 closely follows the macro-tree transducer notation and is hence
easy to modify and extend. Fig. 3 displays the result of the prepro-
cessing: binary branching trees with the minimum needed informa-
tion for our analyses. The preprocessed trees are straightforward to
convert to the abstract terms in Fig. 2.

(IP-MAT

(NP-SBJ (Q a) (nc (adj swede) (N entity)))

(tv-app (tv won) (NP (Q a) (N nobel_prize))))

(IP-MAT

(NP-SBJ (Q every) (nc (adj swede) (N entity)))

(cop (Q a) (nc (adj scandinavian) (N entity))))

Fig. 3. Preprocessed treebank sentences

The transformations from the Penn Historical treebank trees to
the “tecto-grammatized” trees in Fig. 3 and then to the terms in
Fig. 2 are not specific to TS and can be used independently, with
other semantic theories.

2.3 From ad hoc to Meaningful Transformations

The end result of the preprocessing transformations just described,
and the starting point of TS transformations in §2.4 is the abstract
form, a tecto-grammatized form of a sentence. The abstract form
for the first two sentences of the running example was shown in
Fig. 2, repeated below as Fig. 4. The preprocessing transformations
are ad hoc; little is guaranteed about them. TS transformations in
§2.4, as we soon see, have firmer foundations and a certain degree
of correctness. Naturally they demand their input be ‘sane’, that
is, well-typed. Hence the next step in our processing chain is type
checking the produced abstract form.

The abstract form is defined (see [5]) to be a term in a multi-
sorted algebra, whose sorts are familiar categories. The type of a

3 http://okmij.org/ftp/gengo/transformational-semantics/Treebank.hs

cl (a_x (swede entity))

(won (a_y nobel_prize))

cl (every_x (swede entity))

(is_cn (scandinavian entity))

Fig. 4. Abstract-form terms

composite term is determined from the type of its constituents using
the typing rule of functional application (i.e., modus ponens). As for
the primitives in our example, entity and nobel_prize have the
type N , swede and scandinavian have the type ADJ (equivalent
to N → N), the transitive verb won is typed as NP → V P . Deter-
miners (quantifiers) such as a_x and a_y have the type N → NP .
They are indexed for identification. The predicational copula con-
stant is_cn has the type N → V P ; the constant cl of the type
NP → V P → S forms a clause.

Implementation-wise, the preprocessing transformations in §2.2
eventually produce an abstract-form term in Haskell notation, which
is then ‘loaded’ into the Haskell interpreter – at which point it is
type-checked and verified to have the type S. Although the type
checking does not say that the initial treebank trees or our pre-
processing steps are ‘correct’, it does check they are not obviously
wrong.

2.4 TS Transformations

Even with syntactic details abstracted away, the terms in Fig. 4 are
difficult to immediately interpret as logical formulas. The problem is
the embedded quantifiers whose scope is not apparent. Making the
scope explicit is the job of TS transformations.

Befitting their name, TS transformations transform an abstract
term to a form in which the quantifier scope is clearly marked: specif-
ically, by pulling an embedded quantifier (along with its restrictor)
in front of the subterm over which it takes scope. TS transforma-
tions hence do quantifier raising. Unlike QR [3], however, TS trans-
formations are rigidly and rigorously defined (and also typed). A
transformation that raises a quantifier into an inappropriate place
or produces an ill-formed logical formula cannot even be written (i.e.,
accepted by the Haskell type checker). Thus TS assures a degree of
correctness. Formally, TS transformations are described in [5]; Fig.
5 illustrates them on our running example.

Input cl (a_x (swede entity)) (won (a_y nobel_prize))

Raising a_x Ex (swede entity) (cl x (won (a_y nobel_prize)))

Raising a_y Ex (swede entity) (Ey nobel_prize (cl x (won y)))

Fig. 5. Steps of TS transformations for the first sentence of the running example

TS transformations are composed from primitive, deterministic
steps, such as raising a single quantifier. The raised quantifier like
a_x, leaving behind the constant x, is represented at its new place
by the constant Ex, applied to the restrictor and the term over which
the quantifier takes scope. The landing place is rigidly fixed: right
over the closest cl subterm. In the final result, the last line of Fig.
5, all quantifier scopes are explicit; such term is straightforward to
interpret as a logical (set-theoretic) formula, as detailed in §2.5. The
two transformation steps can be applied in the opposite order, giving
a different but logically equivalent result.

Our interactive Haskell implementation lets the users choose the
steps and their order. The automatic implementation is programmed
to try all possible steps in every order. Not every sequence of steps
is successful (that is, ends in a logical formula): some analyses can
be blocked.

2.5 Deciding Entailment

The end result of TS transformations is the abstract form that can
be easily interpreted logically – or set-theoretically. Fig. 6 shows
that interpretation, for all three sentences in our running example
(FraCaS problem 049).

The meaning of a sentence is given as a set-theoretic proposition
written in first-order logic. For example, ”Every Swede is a Scan-
dinavian” is interpreted as the proposition that the intersection of
swede and entity is included in the intersection of scandinavian
and entity (that is, swede is a subset of scandinavian). Likewise,
“A Swede won a Nobel prize” states that the intersection of swede
and entity has an element in relation won with nobel_prize.

The logical formulas are written in the TPTP format supported
by almost all automated theorem provers (http://www.tptp.org/).
The premises (the first two sentences of FraCaS problem 049) are
marked as axioms and the putative entailment as a conjecture. The

TPTP formulas are written in Prolog-like syntax, with the vari-
able names capitalized. The universal quantification ∀x is notated
as ![X]: and the existential ∃x as ?[X]:; & stands for conjunction
and => for implication.

fof(s1,axiom,

?[Y]: (in(Y,nobel_prize) &

(?[X]: ((in(X,swede) & in(X,entity)) & rel(Y,won,X))))).

fof(s2,axiom,

![X]: ((in(X,swede) & in(X,entity)) =>

(in(X,scandinavian) & in(X,entity)))).

fof(c,conjecture,

?[Y]: (in(Y,nobel_prize) &

(?[X]: ((in(X,scandinavian) & in(X,entity)) & rel(Y,won,X))))).

Fig. 6. Problem 049 in TPTP

We submit the Fig.6 code to E, the automatic theorem prover
for the first-order logic with equality [6]. It finds and displays the
entailment proof.

3 Generalized Quantifiers in First Order

The story so far of transforming an annotated tree to a set-theoretic
proposition has been (save for the preprocessing step, perhaps) easy-
going – too easily. We now describe the pitfalls and problems, some of
which are still open. The first problem is the generalized quantifiers.

The FraCAS corpus exhibits quantifier phrases that go beyond
the mere existence and universality: “several”, “a few”, “few”, “at
least three”, “five”, “most”. We describe our treatment of such gen-
eralized quantifiers – in particular, their representation in a first-
order theory. Such a representation lets us use off-the-shelf, mature
first-order theorem provers to automatically decide entailment. To
be sure, there are sentences whose meaning cannot be represented
in a first-order theory, but they are not common (in particular, they
do not occur in FraCaS).

Expressing the meaning of the whole variety of quantified English
phrases in a first-order theory may seem like a hard problem; yet it

turned out clear-cut. As far as TS transformations are concerned,
generalized quantifiers pose no difficulty: they are raised, along with
their restrictors, just like the plain existential and universal quanti-
fiers.

As an example, consider problem 076:

Few committee members are from southern Europe.
Few female committee members are from southern Europe.

The first sentence has the following abstract form:

cl (few_x committee_member) (is_pp (from southern_europe))

where committee_member is of type N , from southern_europe has
the type PP and is_pp has the type PP → V P . A TS transforma-
tion raises few_x as usual, giving:

Few_x committee_member (cl x (is_pp (from southern_europe)))

The problem comes from trying to express the raised generalized
quantifiers in a first-order theory. The problem is not just writing a
formula but also being able to decide its entailments.

Set-theoretically, we interpret few as an uninterpreted relation –
in our case, between the set of committee members and the set of
people from southern Europe:

fof(s1,axiom,

(![X]: (in(X,sks11) <=> rel(southern_europe,from,X))) &

few(committee_member,sks11)).

The former set is denoted by the constant committee_member; for
the latter, we introduce the fresh constant sks11 accompanied by
the postulate that all members of the set sks11 are also in the rela-
tion from with southern_europe. Likewise, the second sentence of
problem 076 is represented by the conjecture:

fof(c,conjecture,

(((![X]: (in(X,skc3) <=> rel(southern_europe,from,X))) &

(![Xc1]: (in(Xc1,skc2) <=> (in(Xc1,female) & in(Xc1,committee_member)))))

=> few(skc2,skc3)).

where the constant skc2 is the name for the intersection of female
and committee_member, and skc3 is another name for the the set of
people from southern Europe (skc3 and the earlier sks11 are hence
extensionally equivalent).

The relation few is uninterpreted: the E prover knows nothing
about it. To check if the conjecture holds given the premise s1, some
properties of few are required – such as downward monotonicity in
its first argument4:

fof(few1,axiom,![P,P1,Q,Q1]:

((few(P,Q) & seteq(Q,Q1) & imply(P1,P)) => few(P1,Q1))).

fof(imp,axiom, ![P,Q]: (imply(P,Q) <=> (![X]: (in(X,P) => in(X,Q))))).

fof(seteq,axiom, ![P,Q]: (seteq(P,Q) <=> (![X]: (in(X,P) <=> in(X,Q))))).

That is, if few(P,Q) holds for some sets P and Q, and Q1 is ex-
tensionally equivalent to Q and P1 is a subset of P, we assert that
few(P1,Q1) also holds. The axioms imp and seteq define the subset
relation and the extensional equivalence. With these axioms, the E
prover easily determines that the conjecture of problem 076 holds.

Other generalized quantifiers are treated similarly, as uninter-
preted relations with axioms defining their monotonicity and other
properties. As another, somewhat surprising example, let’s consider
problem 002:

Every Italian man wants to be a great tenor.
Some Italian men are great tenors.
There are Italian men who want to be a great tenor.

When transcribing the original FraCaS corpus to XML, Bill Mac-
Cartney added: “Note that second premise is unnecessary and irrel-
evant”. At first glance, who can doubt it: the fact that some Italian
men are great tenors has no bearing on wanting to be one. It is only
when we set out to prove the conjecture that we see the subtlety.

The set-theoretic meaning of the three sentences in problem 002
is as follows:

fof(s1,axiom,

![X]: ((in(X,italian) & in(X,man)) => in(X,want_greattenor))).

fof(s2,axiom,

(((![X]: (in(X,sks22) <=> (in(X,great) & in(X,tenor)))) &

(![Xs21]: (in(Xs21,skitalianman) <=>

(in(Xs21,italian) & in(Xs21,man))))) &

4 Bill MacCartney, the author of the XML-annotated FraCaS, noted that the orig-
inal FraCaS authors must have taken “few” to mean a small absolute number –
downward-monotone in the first argument.

several(skitalianman,sks22))).

fof(c,conjecture,

(((![X]: (in(X,skc2) <=> in(X,exist))) &

(![Xc1]: (in(Xc1,skitalianmanwant_greattenor) <=>

((in(Xc1,italian) & in(Xc1,man)) & in(Xc1,want_greattenor)))))

=> several(skitalianmanwant_greattenor,skc2))).

The axiom for several

fof(several1,axiom,![P,P1,Q,Q1]:

((several(P,Q) &

(![X]: ((in(X,P) & in(X,Q)) => ((in(X,P1) & in(X,Q1))))))

=> several(P1,Q1))).

states that if several(P,Q) holds for two sets P and Q, then it holds
for any other sets P1 and Q1 that have at least the same intersection.
Without the second sentence of problem 002, the prover was unable
to make the inference. A moment of thought tells why: the premise
“Every Italian man wants to be a great tenor.” does not actually
imply that there exist at least several Italian men (even if we are
to assume that “every” has existential import). It is the seemingly
irrelevant “Some Italian men are great tenors.” that asserts their
existence, which is needed to reach the conclusion in the problem.

4 Further Challenges

Generalized quantifiers are not the only and not the biggest challenge
that we have encountered so far. We now describe other problems in
trying to represent the meaning of FraCaS sentences as first-order
set-theoretic propositions.

Problem 002 discussed in §3 has another complication. Here its
first sentence again:

Every Italian man wants to be a great tenor.
showing off the intensional “want” with the infinitival complement.
Intensionality is a thorny subject. We tackle it rather unconvention-
ally: syntactically, without resorting to possible worlds. To wit, we
represent the predicate of our sentence as an uninterpreted constant
want_greattenor, spelling out the wanted property. Clearly it does
not imply (or implied by) want_great and want_tenor, exhibiting
the desired referential opacity.

Definite descriptions are common among FraCaS problems as
they are in English in general. A simple definite description like
“the report” is regarded as an uninterpreted constant the_report –
quite like a proper name. There are many more complicated cases in
FraCaS, for example, problem 017:

An Irishman won the Nobel prize for literature.
An Irishman won a Nobel prize.

which we understand as

fof(s1,axiom, ?[X]:

((in_prominent(the_sks12,sks12) &

(![Xs11]: (in(Xs11,sks12) <=>

(rel(literature,for,Xs11) & in(Xs11,nobel_prize))))) &

(in(X,irishman) & rel(the_sks12,won,X)))).

fof(c,conjecture,

?[X]: (in(X,irishman) & (?[Y]: (in(Y,nobel_prize) & rel(Y,won,X))))).

introducing two uninterpreted constants sks12 and the_sks12. The
first sentence of problem 017 asserts that sks12 is extensionally
equivalent to the intersection of for-literature and nobel_prize,
and that the_sks12 is the prominent element of that set. The promi-
nent membership has the expected properties of unique membership:

fof(prominent1,axiom,![X,P]: (in_prominent(X,P) => in(X,P))).

fof(prominent2,axiom,![X,Y,P]:

((in_prominent(X,P) & in_prominent(Y,P)) => (X=Y))).

5 Open Questions

Although the generalized quantifier section of FraCaS contains rather
simple sentences, they already pose problems that we are yet to solve.
The most prominent, and the frequent, is plurality – especially bare
plurals. In phrases like “there are Italian men” one may assume an
implicit quantifier “several”. However, such assumption fails, for ex-
ample, for problem 013:

Both leading tenors are excellent.
Leading tenors who are excellent are indispensable.
Both leading tenors are indispensable.

If we are to treat “leading tenors” as “several leading tenors”, the
third sentence clearly does not follow from the other two – yet na-
tive speakers report the entailment. The example illustrates the
well-known (and well-argued about) ambiguity of bare plurals be-
tween generic and existential readings. Literature has no shortage of
proposals for analyzing bare plurals. What is lacking is the robust
method that can let us reliably do textual inferences without any
human intervention.

6 Evaluation

We have applied TS to the entailment problems in the generalized
quantifier section of FraCaS, which has 80 problems. So far5 we have
handled 36 of them – in all the cases obtaining the agreement with
the FraCaS entailment results. Specifically, out of 16 problems of
FraCaS subsection 1.1 (conservativity) we successfully handled 12.

Currently we cannot deal with many cases of mass nouns, bare
plurals or definite plural descriptions, as discussed in §5. For the
remaining problems, it is just the matter of writing axioms for gen-
eralized quantifiers.

7 Conclusions and Reflections

We have described the transformational-semantics–based approach
to text entailment. It transforms an input Penn treebank-like anno-
tated tree to a tecto-grammatical form, and then to a set-theoretic
logical formula submitted to a first-order theorem prover. The ap-
proach is fully automatic and exhaustively enumerates all ambigui-
ties licensed by TS.

We have applied TS to the generalized quantifier problems of
FraCaS. For all the problems we can currently apply TS to, we have
obtained the expected entailments or the lack of entailments. Thus,
TS does work on a tree bank, and is capable of natural logic infer-
ences with generalized quantifiers.

Applying TS to the FraCaS corpus has been a humbling experi-
ence. Facing a bank of sentences rather than a few examples – and

5 as of February 2018

analyzing them automatically, and being able to perform inferences –
turns out quite a bigger challenge than I could imagine. Disappoint-
ingly, the quantifier ambiguity, the original motivation for TS, was
conspicuously absent in the FraCaS fragment at hand. Quantifier
puzzles are indeed uncommon. Plurals, on the other hand, appear
all the time.

Plurals and mass nouns, hence, are the most pressing problems
for the future work. We would also like to extend TS to event se-
mantics, so to handle tense and aspect-related parts of FraCaS.

Acknowledgments I am very grateful to Alastair Butler for providing
the FraCaS data in the treebank form and explaining the annotation
system – and for his many encouragements.

Bibliography

[1] Alastair Butler. The treebank semantics parsed corpus. http:

//www.compling.jp/tspc/, 2017.
[2] Robin Cooper, Dick Crouch, Jan van Eijck, Chris Fox, Josef

van Genabith, Jaspars Jan, Hans Kamp, David Milward, Man-
fred Pinkal, Massimo Poesio, Steve Pulman, Ted Briscoe, Holger
Maier, and Karsten Konrad. Using the framework. Deliverable
D16, FraCaS Project, 1996.

[3] Irene Heim and Angelika Kratzer. Semantics in Generative
Grammar. Blackwell Publishers, Oxford, 1997.

[4] Oleg Kiselyov. Applicative abstract categorial grammars in full
swing. In Mihoko Otake, Setsuya Kurahashi, Yuiko Ota, Ken
Satoh, and Daisuke Bekki, editors, JSAI-isAI Workshops, volume
10091 of Lecture Notes in Computer Science, pages 66–78, 2015.

[5] Oleg Kiselyov. Non-canonical Coordination in the Transforma-
tional Approach, volume 10247 of LNCS, pages 33–44. Springer
International Publishing, Cham, 2017.

[6] Stephan Schulz. System Description: E 1.8. In Proc. of the
19th LPAR, Stellenbosch, volume 8312 of LNCS, pages 735–743.
Springer, 2013.

