
Non-canonical Coordination in the

Transformational Approach

Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract. Recently introduced Transformational Semantics (TS) for-
malizes, restraints and makes rigorous the transformational approach
epitomized by QR and Transformational Grammars: deriving a mean-
ing (in the form of a logical formula or a logical form) by a series of
transformations from a suitably abstract (tecto-) form of a sentence. TS
generalizes various ‘monad’ or ‘continuation-based’ computational ap-
proaches, abstracting away irrelevant details (such as monads, etc) while
overcoming their rigidity and brittleness. Unlike QR, each transforma-
tion in TS is rigorously and precisely defined, typed, and deterministic.
The restraints of TS and the sparsity of the choice points (in the order of
applying the deterministic transformation steps) make it easier to derive
negative predictions and control over-generation.

We apply TS to right-node raising (RNR), gapping and other instances of
non-constituent coordination. Our analyses straightforwardly represent
the intuition that coordinated phrases must in some sense be ‘paral-
lel’, with a matching structure. Coordinated material is not necessarily
constituent – even ‘below the surface’ – and we do not pretend it is.
We answer the Kubota, Levine and Moot challenge (the KLM problem)
of analyzing RNR and gapping without directional types, yet avoiding
massive over-generation. We thus formalize the old idea of ‘coordination
reduction’ and show how to make it work for generalized quantifiers.

1 Introduction

Non-canonical coordination – right-node raising (RNR) as in (1),
argument-cluster coordination (2) and, in particular, gapping (3-7) –
provides an unending stream of puzzles for the theory of semantics
[8, 10]:

(1) John likes and Mary hates Bill.
(2) John gave a present to Robin on Thursday and to Leslie on Friday.
(3) Mary liked Chicago and Bill Detroit.
(4) One gave me a book and the other a CD.
(5) Terry can go with me and Pat with you.
(6) Mrs. J can’t live in Boston and Mr. J in LA.
(7) Pete wasn’t called by Vanessa but rather John by Jesse.

With gapping, it is not just a simple verb that can “go missing”, as
in (3). It can be a complex phrase of a verb with arguments and com-
plements – or, as in (4), a verb and an auxiliary verb. Interactions of
coordination with scope-taking are particularly challenging: a com-
petent theory needs to handle both narrow- and wide-scope reading
of “a present” in (2) and the narrow- and wide-scope coordination
in (6). In (7), negation somehow scopes over the first “coordinated
structure” but not over the second.

Recently in [8, 9], Kubota and Levin put forward new analyses
of non-canonical coordination, applying hybrid categorial grammars
they have been developing. In contrast, the analyses in [6] use plain
old non-associative Lambek grammar. However, the main ideas of
[6] are completely hidden behind thickets of complicated types and
their interactions within a derivation. The intuition that coordinated
structures must be parallel is thus lost in the details.

We present a new analysis of non-constituent coordination using
the more intuitive and less round-about framework TS (formerly
called AACG) [7], designed to take the ‘hacking’ out of tree-hacking.
TS lets us talk about QR and other transformations towards some
semantic form in a rigorous, formal, mostly deterministic way. We
remind of TS in §2.

Our analyses re-expose ideas from the earlier approach of [6], but
free them from the bondage of encoding. A notable feature of TS is
the absence of directional types. We use it to answer the challenge
posited by Kubota, Levin [10] and Moot (dubbed “the KLM prob-
lem” by Morrill): to analyze RNR within categorial-grammar–like
formalisms without directional types, while avoiding massive over-
generation.

One may categorize the various approaches to non-canonical co-
ordination based on what exactly is being coordinated. Take (1),
repeated below

2

(1) John likes and Mary hates Bill.
which will be our running example for a while. Are the complete
sentences being coordinated behind the scene, as in “John likes Bill”
and “Mary hates Bill” with “Bill” being later elided? Or perhaps
sentences with holes are being coordinated, as in “John likes hypobj”?
(as done in [6, 8, 9].) Or perhaps we regard “John likes” and “Mary
hates” as constituents and coordinate as such (as in CCG). In this
paper we give another answer: we analyze (1) as the coordination
of the complete clause “Mary hates Bill” with the cluster “John”
and “likes”. The types of the cluster components and their order
guide the transformation that picks the needed material from the
clause “Mary hates Bill” to make the cluster the complete clause.
The ‘picking transformation’ can be naturally supported within the
existing setup of TS, using the same mechanism used in [7] to analyze
quantification and inverse linking. The intuition of ‘picking’ is made
precise and formal in §3.

The structure of the paper is as follows. §2 reminds TS, in a
different, clearer presentation. We then describe our approach to
coordination: transforming non-canonical one to the ordinary coor-
dination of clauses. §4 discusses the related work that forms the
context of our approach. The rigorous nature of TS makes it easier
to carry analyses mechanically, by a computer. In fact, the anal-
yses in the paper have been so programmed and executed. The
implementation, in the form of a domain-specific language embed-
ded in Haskell – ‘the semantic calculator’ – is publicly available at
http://okmij.org/ftp/gengo/transformational-semantics/.

2 TS Background

Traditional Categorial Grammar approaches draw parallels between
proof systems and grammars: grammaticality is identified with the
existence of a derivation. It is rather challenging however to prove
the absence of a derivation, and to overview the space of possible
derivations in general.

TS (formerly, AACG) [7] in contrast pursues the computational
approach, harking back to Transformational Generative Grammars
[2] of 1960s: Rather than trying to deduce a derivation, it tries to
induce the meaning (the logical formula) by applying a sequence

3

of precisely and formally defined transformations to a suitably ab-
stract form of a sentence. The latter abstracts away the case and the
number agreement, declination, etc. The transformations are deter-
ministic; the order of their applications is generally not. (There may
still be dependencies between particular transformations imposing
the order.) The transformations are partial: the failure is taken as
ungrammaticality of the original sentence.

Formally, TS deals with term languages that represent typed fi-
nite trees. Each T-language is a set of well-typed terms built from
typed constants (function symbols) c. Types are

Base types υ
T-Types σ ::= υ | σ → σ

The set terms d is then inductively defined as: (i) each constant
c of the type σ is a term; (ii) if c has the type σ1 → σ and d is
a term of type σ1, then c d is a term of type σ; (iii) nothing else
is a term. The set of constants and their types is a (multi-sorted)
algebraic signature; A T-language is hence a term language over the
signature, which defines the language.

Table 1 shows three sample languages. TS has the single base
type string and numerous constants "John", "greet", "every", etc.
of that type. It describes the surface, “phonetic”, form of a sentence.
The constant - ·- : string→ string→ string (usually written as the in-
fix operation) signifies string concatenation. The language TA whose
types are familiar categories represents the abstract form. TL is the
language of formulas of predicate logic, which describe the meaning
of sentences. The (infinite) sets of constants varx, vary, . . . and the
corresponding Ux, . . . and Ex, . . . represent (to be) bound variables
and their binders. Unlike the conventional (lambda-bound) vari-
ables, they are not subject to substitution, α-conversion or capture-
avoidance. TL likewise has constants x, y, z, . . . of the type e and
the corresponding sets of constants ∀x,∀y, . . . ,∃x,∃y, . . . intended as
binders.

As a way to introduce TS we show the quantification analysis
of “John greeted every participant”. The sample sentence in the
language TA has the form

cl john (argp greet (everyx participant))

4

υ c

TS string
·: string→ string→ string
"John" , "greet" , "every" , . . . : string

TA S,NP,N, V P, PP, TV

John: NP
participant: N
greet: TV
cl: NP → V P → S
argp: TV → NP → V P
ppadv: V P → PP → V P
everyx, everyy, az: N → NP
varx, vary, . . . : NP
Ux,Uy, . . . ,Ex,Ey, . . . : N → S → S

TL e, t

conj ,disj , . . . : t→ t→ t
john: e
participant: e→ t
greet: e→ t→ t
∀x,∃y: t→ t
x, y, z, . . . : e

Table 1. Signatures of various T-languages

to be referred to as jgep. The constant cl combines an NP and a
V P into a clause. (Likewise, argp attaches an argument to a verb and
ppadv attaches a prepositional phrase (PP) as a VP complement.)
Quantifiers are uniquely labeled by x, y, z, etc. We assume it is the
job of a parser to uniquely label the quantifiers in the abstract form.

Before taking on meaning we illustrate the recovering of the sur-
face form of jgep, by applying the following ‘phonetic’ transforma-
tion Lsyn.

Lsynpcl d1 d2q 7→ Lsynpd1q · Lsynpd2q
Lsynpargp d1 d2q 7→ Lsynpd1q · Lsynpd2q
Lsynpjohn q 7→ "john"

Lsynpeveryx q 7→ "every"

Lsynpparticipant q 7→ "participant"

. . .

The rules are written in the form reminiscent of top-down tree trans-
ducers. The result Lpdq of transforming a term d is obtained by
trying to match d against the pattern in the left-hand-side of every
rule. The right-hand-side of the matching rule gives the result. If

5

no matching rule is found, the transformation is not defined (i.e.,
‘fails’). The patterns may contain variables, which stand for the cor-
responding subterms. For example, in the first rule, d1 and d2 match
the two children of a term whose head is cl. The occurrences of these
variables in the right-hand side of the rule are replaced by the corre-
sponding matching branches. Intuitively, Lsem looks like a context-
free-grammar of the sample sentence, with jgep being its derivation
tree.

The meaning is derived by applying a sequence of transforma-
tions to a TA term. The transformation LUx gets rid of everyx, intro-
ducing varx and Ux instead. This transformation is context-sensitive.
Therefore, we first define context C – a term (tree) with a hole – as
follows:

C = [] | cl C d | cl d C | argp d C | ppadv C d | ppadv d C
where the meta-variable d stands for an arbitrary term. In words: a
context is the bare hole [], or a clause (the cl term) that contains a
hole in the subject or the predicate, or a VP made of a transitive
verb whose argument has a hole, or a complemented VP with the
hole in the head or the complement, etc. We write C[d] for the term
obtained by plugging d into the hole of C. We further distinguish
two subsets of contexts Ccl and Cncl:

Ccl = cl Cncl d | cl d Cncl

Cncl = [] | argp d Cncl | ppadv Cncl d | ppadv d Cncl

Intuitively, Ccl is the smallest context that has a hole within a clause.
The transformation LUx is then stated as follows:

LUxpCcl[everyx dr]q 7→ Ux (LUxpdrq) (LUxpCcl[varx]q)
We now use extended top-down tree transducers, whose patterns are
‘deep’, that is, contain matching expressions within arbitrary con-
text. As before, whenever a pattern, e.g., Ccl[everyx dr], matches
the source term, it is replaced with Ux dr Ccl[varx], and the transfor-
mation is re-applied to its subterms. That is, Ccl[everyx dr] on the
left hand-side of the rule matches a tree that contains, somewhere
inside, a sub-expression of the form everyx dr (a branch headed by
everyx). On the right-hand side of the rule, Ccl[varx] is the same tree
in which everyx dr subterm has been replaced with varx. Unlike Lsyn

above, the LUx transformation does not look like a context-free gram-
mar. It is context-sensitive. The other difference is the presence of a

6

default rule: if LUxpdq finds no match for d, LUx is repeated on sub-
expressions of d. In particular, LUxpcq is the constant c itself (unless
there is an explicit rule for that particular c). For Lsyn, which trans-
lates from one language, TA, to another, TS, the default rule does
not make sense.

Our example jgep matches the left-hand side of LUx immediately:
dr matches participant and Ccl is john (argp greet []), The result

(Ux participant) (cl john (argp greet varx))
is in effect the Quantifier Raising (QR) of “every participant”, but
in a rigorous, deterministic way. The intent of the new constants
should become clear: Ux is to represent the raised quantifier, and
varx its trace. Unlike QR, the raised quantifier (Ux participant) lands
not just on any suitable place. LU puts it at the closest boundary
marked by the clause-forming constant cl. LU is type-preserving: it
maps a well-typed term to also a well-typed term. Again unlike QR,
we state the correctness properties such as type-preservation. The
type preservation is the necessary condition for the correctness of
the transformations.

To finally obtain the meaning we apply the transformation Lsem:

Lsempcl d1 d2q 7→ Lsempd2q Lsempd1q
Lsempargp d1 d2q 7→ Lsempd1q Lsempd2q
LsempUx d1 d2q 7→ ∀x Lsempd2q x⇒ Lsempd2q
Lsempvarx q 7→ x
Lsempjohn q 7→ john
Lsempparticipant q 7→ participant

. . .
that produces the logical formula representing the term’s meaning.
The transformation replaces john, etc. with the corresponding logical
constants and Ux with the universal quantifier. Since Lsem translates
one language, TA, into a different one, TL, this transformation, like
Lsyn, has no default rule. If the source term does not match the pat-
tern of any Lsem rule, the transformation is undefined. In particular,
applying Lsem to the original jgep term straight away is not de-
fined because there is no rule for everyx. The failure means that jgep
cannot be given meaning – directly. However, LsempLUxpjgepqq is
well-defined, resulting in

∀x participant x⇒ (greet x john)

7

3 Coordination in TS

We now apply TS to the analysis of (non-canonical) coordination.
As a warm-up, we take the non-problematic “John tripped and fell,”
which is an example of the conventional VP coordination. We analyze
it differently, however, as ‘left-node raising’ so to speak, to introduce
the technique to be later used in right-node raising (RNR), argument
cluster coordination (ACC) and gapping 1.

The abstract form of our example is

andS,VP (cl john tripped) fell

The new constant andS,VP has the type S → V P → S. As common,
we assume a whole family of constants andX,Y of different types.
The constant andS,VP – like everyx in the example of the previous
section – is not in the domain of Lsem. Therefore, to be able to derive
the logical formula, we have to transform it away. The following
transformation La does that:

LapandS,VP (cl dNP dV P) dq 7→
and Lap(cl dNP dV P)q Lap(cl d dV P)q

The rule again is written in the form of extended top-down tree
transducers: when the source term matches the rule’s pattern, it is
replaced with the right-hand-side of the rule. Again, d with various
subscripts are meta-variables that stand for arbitrary subterms (tree
branches). Like LUx, there is a default rule: a term that does not
match the rule undergoes La on its subterms, if any. Applying La to
our TA term transforms it to

and (cl john tripped) (cl john fell)

where and is the ordinary coordination, of the type S → S → S,
which can be given the meaning of propositional disjunction and
which hence is in the domain of Lsem. The result is straightforward
to transform to a logical formula TL.

1 We may even analyze NP coordination as a sort of RNR: after all, “John and Mary
left” can have the meaning of the conjunction of truth conditions of “John left”
and “Mary left”. Certainly, “John and Mary left” may also mean that “John and
Mary”, taken as a group, left. In the later case, the group can be referred as “they”.
Our analysis applies to the former (conjunction) case but not the latter. Hence we
posit that ‘and’ is not only polytypic but also polysemic.

8

3.1 RNR in TS

Our next example is the proper RNR: “John likes and Mary hates
Bill”, whose abstract form is

and(NP,TV),S (john, like) (cl mary (argp hate bill))
We have added to TA tuples (d, d) and tuple types (σ, σ). The con-
stant and(NP,TV),S has the type (NP, TV)→ S → S. Whereas (cl mary
(argp hate bill)) is the complete sentence, (john, like) is certainly not.
It is not even a constituent; it is just a sequence of words: a cluster.
Since we added to TA tuples and new constants, we may need to
extend our earlier transformation rules, specifically, Lsyn for trans-
forming into the surface form of the sentence TS:

Lsynpand(NP,TV),S d1 d2q 7→ Lsynpd1q · "and" · Lsynpd2q
Lsynp(d1, d2)q 7→ Lsynpd1q · Lsynpd2q

Applying Lsyn to our TA clearly gives “John likes and Mary hates
Bill”. This ‘phonetic’ transformation is dull and uninteresting, in
contrast to the higher-order phonetics of [8].

Let us derive the meaning, the TL formula, from the same TA
term. Before we can apply Lsem we need to transform away and(NP,TV),S,
which is not in the domain of that transformation. We extend the
La with a new clause:

Lapand(NP,TV),S (d1, d2) (cl d C[argp d4 d5])q 7→
and Lap(cl d1 (argp d2 d5))q Lap(cl d C[argp d4 d5])q

where d1, d, d5 have to be of the type NP and d2 and d4 of the
type TV . The transformation is context-sensitive and type-directed.
It may be regarded as matching of (d1, d2) against the complete
sentence (the second argument of and(NP,TV),S). The matching is de-
termined by the type of and(NP,TV),S. The parallel structure of the
coordination is clearly visible.

Analyses of RNR without directional types (e.g, using ACG) run
into trouble of over-generating “*John likes Bill and Mary hates”.
Although we can write the abstract form for that sentence as well:

andS,(NP,TV) (cl john (argp like bill)) (mary, hate)
we do not provide the La rule with the constant andS,(NP,TV). Since
it remains uneliminated, Lsem cannot be applied and the meaning
cannot be derived. In TS, transformations are partial and are not
guaranteed to always succeed. The original sentence is considered

9

ungrammatical then. We discuss the choice of transformable andXY
constants in §3.4.

Let us consider another well-known troublesome example, due to
P. Dekker:

(1) *The mother of and John thinks that Mary left.

In categorial grammar approaches, ‘the mother of’ and ‘John thinks
that’ may be given the same type, (S/(N\S))/N . The two phrases
may hence be coordinated, over-generating (1). In TS, ‘the mother
of’ cannot be given any type at all (likewise, ‘John thinks that’ is
not a constituent and has no type.) We can only treat ‘the mother
of’ as a cluster, of the determiner, N and the proposition. We do
provide the constant and(DET,N,POF),S with the corresponding rule

Lapand(DET,N,POF),S (d1, d2, of) (Ccl[ddet (ppadj dn of dnp)])q 7→
and Lap(Ccl[d1 (ppadj d2 of dnp)])q Lap(Ccl[ddet (ppadj dn of dnp)])q

which can be used to analyze “The mother of, as well as the father
of John died”. The rule does not apply to the problematic (1) since
there is no similar parallel structure of the of-headed PP.

3.2 Argument Cluster Coordination and Gapping

The same transformation idea also works for argument cluster co-
ordination (ACC) and gappping. Take for example, “Mary liked
Chicago and Bill Detroit”, or, in the abstract form:

andS,(NP,NP) (cl mary (argp liked chicago)) (bill, detroit)

The transformational rule for the constant andS,(NP,NP) picks a suit-
able subterm that can relate two NPs from the left conjunct

LapandS,(NP,NP) (cl d C[argp d4 d5]) (d1, d2)q 7→
and Lap(cl d C[argp d4 d5])q Lap(cl d1 C[(argp d4 d2)])q

It turns our TA term to

and (cl mary (argp liked chicago)) (cl bill (argp liked detroit))

with the clear meaning. The examples (2) and (4) of §1 are dealt with
similarly. One may observe that the analysis of gapping is nearly the
same as that of VP coordination, used in the warm-up example.

10

3.3 Coordination and Scoping

The interaction of non-canonical coordination with quantification is
not much different from that of the ordinary coordination of two
clauses. For example, take (2) of §1, whose abstract form is

andS,(PP,PP)
(cl speaker (ppadv (ppadv (argp gave (ax present)) (to robin))(on thu)))
(to leslie, on fri)

contains two components to be eliminated by transformations: andS,(PP,PP)
and the QNP (ax present). The latter is to be handled by LE, which
is analogous to LU but for the existential quantifier. The transforma-
tions La and LE can be applied in either order, which corresponds
to the wide- and narrow-scope–readings of (2). The narrow scope
happens when La goes first, producing

and
(cl speaker (ppadv (ppadv (argp gave (ax present)) (to robin))(on thu)))
(cl speaker (ppadv (ppadv (argp gave (ax present)) (to leslie))(on fri)))

The LEx transformation then gives

and
(Ex present (cl speaker (ppadv (ppadv (argp gave varx) (to robin))(on thu))))
(Ex present (cl speaker (ppadv (ppadv (argp gave varx) (to leslie))(on fri))))

whose meaning is the conjunction of two existentially quantified for-
mulas.

If LEx is applied first to the original sentence, we get

andS,(PP,PP)
(Ex present (cl speaker (ppadv (ppadv (argp gave varx) (to robin))(on thu))))
(to leslie, on fri)

Strictly speaking, the rule analogous to La from §3.2 does not apply
since the first conjunct now has the form Ex dr (cl d1 d2) rather than
the bare (cl d1 d2). We have to hence generalize the rule to

LapandS,(PP,PP) Cncl [(cl d C[ppadv (ppadv dh d4) d5])] (d1, d2)q 7→
Cncl[and Lap(cl d C[ppadv (ppadv dh d4) d5])q

Lap(cl d C[ppadv (ppadv dh d1) d2])q]
effectively pulling out the context Cncl – the sequence of Ux d and Ex d
quantifiers and their restrictors – and coordinating underneath. The
coordination thus receives narrow scope. Such pulling of the context
may seem ad hoc; however, it is this general form of La rules that

11

gives the mechanism to account for the anomalous scope of negation
in (7) of §1, repeated below.

(7) Pete wasn’t called by Vanessa but rather John by Jesse.
The transformation involving the contrasting coordinating particle
such as ‘but rather’ gets a chance to examine Cncl and determine if
there is a negation to contrast with:

LapratherS,(NP,PP) (Neg (cl d C[ppadv d4 d5])) (d1, d2)q 7→
and (Neg Lap(cl d C[ppadv d4 d5])q) Lap(cl d1 (ppadv d4 d2))q

where Neg is the constant analogous to Ux.

3.4 Discussion

We have presented the uniform analysis of both the canonical and
non-canonical coordination, reducing the variety of coordination (VP,
RNR, ACC, Gapping) to the choice of the coordinating constants
andS,X or andX,S that adjoin material (often just a cluster of words)
to a sentence. The transformation rules driven by the constants pick
the pieces from the sentence to complete the material to a clause.
We have thus provided a uniform mechanism of coordination. The
corresponding policy is embodied in the coordinator constants like
and and hence lexicalized.

There remains a question of a general principle/pattern that gov-
erns the choice of the constants. For example, the fact that in English
the coordinated sentence appears on the right for RNR but on the
left for ACC and Gapping boils down to the presence of and(NP,TV),S
and andS,(NP,NP) and the absence of andS,(NP,TV) and and(NP,NP),S. In
contrast, one may say that this fact ‘falls out’ as a consequence of
like-category coordination analyses in directional categorial gram-
mars. One may also say that the like-category coordination is itself a
postulate, which does not come from any general principle, but does
have significant empirical justification. Like any empirical principle,
it has exceptions: unlike-category coordination, e.g., “John saw the
facts and that Mary had been right”. Also, the like-category coordi-
nation leads to overgeneration, as we saw in the Dekker’s example
in §3.1.

Since our TS approach is still new, we have not yet accumulated
enough empirical data to discern patterns and formulate postulates

12

that underlie the presence of coordination constants for some types
and their absence for others. For now, we leave the question open.

4 Related Work

Our transformational approach is rooted in Transformational Gen-
erative Grammars [2, 3], later carried into Minimalism [4]. Our ab-
stract form TA is similar to the spell-out of Minimalism. However,
whereas the spell-out is near culmination of a syntactic derivation
for Minimalists, for us, it is just the beginning. We are not interested
in how structure is created through a sequence of Merges from lex-
ical selections. Rather, we consider our abstract form as given (by
a parser) and investigate its transformations into a semantic form.
Our transformations are hence all covert.

Closely related to TS is the work of Butler [1], who also ob-
tains a semantic representation as a result of a transformation from
a parsed tree. Unlike us, he has applied his approach to a wealth
of empirical data in many languages and has truly achieved wide
coverage. His transformations are rather complex and coarse, doing
many things at once, and not typed. One may view TS as an attempt
to re-engineer and understand Butler’s approach and decompose his
transformations into elementary steps.

We are grateful to the anonymous reviewer for pointing out the
analysis of ACC and Gapping in [14].

(1) The interpretation of an elliptical construction is ob-
tained by uniformly substituting its immediate constituents
into some immediately preceding structure, and computing
the interpretation of the results. [14, p. 162, (119)]

We indeed share the underlying idea of picking and substituting of
‘immediate constituents’ into the coordinated material (understood
at some level as an elliptical construction). The proposal of [14] re-
mained rather informal; the present paper may be seen as an attempt
to formalize the idea, as well as to extend it to scope phenomena.

There have been other attempts to solve the KLM problem with-
out directional types (within the ACG-like formalisms). Kanazawa
[5] proposes ‘regular constraints’ to prevent over-generation (which
recall structural constraints in Government and Binding). This amounts

13

however to duplication of lexical entries. The approach [13] reins in
the over-generation using subtyping. Either proposal can be classi-
fied as ‘proof search’ rather than computational like TS; in case of
[13] with no guarantees that the proof search ever terminates (and,
as the authors admitted, no good way to characterize the space of
available derivations and detect over-generation).

5 Conclusions

We have demonstrated the transformational analyses of RNR and
Gapping. The analyses make precise various eliding schemas, de-
manding type preservation. The asymmetry of the type of and(NP,TV),S
and similar constants is what lets us answer the Kubota, Levine and
Moot challenge: how to prevent over-generation in analyses of RNR
and gapping without directional types.

The idiosyncrasies of coordination are distilled to the ad hoc
choice of constants andXY. There are transformations for some types
XY but not for the others. There may be a pattern there. Collecting
the arbitrariness in one place might make the pattern easier to find.
Being able to handle the entire ellipsis part of the FraCaS corpus
seems the natural first step in searching for that pattern.

It is interesting to consider interpreting the “sequence of words”
as a discontinuous sentence in the sense of Morrill [12].

Another future work task is to apply TS to more complicated
scoping phenomena including ‘same’, ‘different’, ‘the total of’ – as
well as to various wh-movement phenomena.

Acknowledgments I am very grateful to Leo Tingchen Hsu for numer-
ous perceptive and stimulating discussions. I thank an anonymous
reviewer for many very insightful and helpful comments. Numerous
discussions with Yusuke Kubota, Bob Levine, Alastair Butler, Greg
Kobele and the participants of the workshop “New Landscapes in
Theoretical Computational Linguistics” (Ohio State University, Oc-
tober 14-16, 2016) are gratefully acknowledged.

14

Bibliography

[1] Alastair Butler. Linguistic Expressions and Semantic Process-
ing - A Practical Approach. Springer, 2015.

[2] Noam Chomsky. Aspects of a Theory of Syntax. MIT Press,
Cambridge, Mass., 1965.

[3] Noam Chomsky. Lectures on Government and Binding. Foris,
Dordrecht, 1981.

[4] Noam Chomsky. The Minimalist Program. The MIT Press,
Cambridge, Massachusetts, 1995.

[5] Makoto Kanazawa. Syntactic features for regular constraints
and an approximation of directional slashes in abstract catego-
rial grammars. In Kubota and Levine [11], pages 34–70.

[6] Oleg Kiselyov. Canonical constituents and non-canonical co-
ordination - simple categorial grammar account. volume 9067
of Lecture Notes in Computer Science, pages 99–113. Springer,
2014.

[7] Oleg Kiselyov. Applicative abstract categorial grammars in full
swing. In Proc. LENLS 12. November 2015.

[8] Yusuke Kubota and Robert Levine. Gapping as like-category
coordination. In Denis Béchet and Alexander Dikovsky, editors,
Logical Aspects of Computational Linguistics: 7th International
Conference, pages 135–150. Springer, 2012.

[9] Yusuke Kubota and Robert Levine. Gapping as hypotheti-
cal reasoning. To appear in Natural Language and Linguistic
Theory, available at http://ling.auf.net/lingbuzz/002123,
2014.

[10] Yusuke Kubota and Robert Levine. Against ellipsis: Arguments
for the direct licensing of ‘non-canonical’ coordinations. Lin-
guistics and Philosophy, 38(6):521–576, 2015.

[11] Yusuke Kubota and Robert Levine, editors. Proceedings for
ESSLLI 2015 Workshop ’Empirical Advances in Categorial
Grammar’. University of Tsukuba and Ohio State University,
2015.

[12] Glyn Morrill, Oriol Valent́ın, and Mario Fadda. The displace-
ment calculus. Journal of Logic, Language, and Information,

20(1):1–48, 2011.
[13] Carl Pollard and Chris Worth. Coordination in linear categorial

grammar with phenogrammatical subtyping. In Kubota and
Levine [11], pages 162–182.

[14] Ivan A. Sag, Gerald Gazdar, Thomas Wasow, and Steven
Weisler. Coordination and how to distinguish categories. Nat-
ural Language and Linguistic Theory, 3(2):117–171, 1985.

16

