Polynomial Event Semantics Non-Montagovian Proper Treatment of Quantifiers

Oleg Kiselyov

Tohoku University, Japan

LENLS November 13, 2018

1

Outline

▶ Introduction

Event Semantics, peculiarly

Key idea: Event groups

Polynomial Event Semantics

Compositional Poly-concept Semantics

Conclusions

Introduction

Event Semantics

Quantification

Introduction

Event Semantics Davidson

Quantification

Montague

Introduction

Event Semantics Davidson

Quantification Montague

http://okmij.org/ftp/gengo/

Summary

No

- No Montague
- No continuations
- ▶ No monads, applicatives, category theory
- ▶ No lambda-calculus
- No variables

Mere simple set theory and algebra

- Universal, existential and counting quantification with all the benefits of event semantics
- Compositional semantics
- ▶ In situ analysis of quantifiers
- Quantifier ambiguity

Outline

Introduction

▶ Event Semantics, peculiarly

Key idea: Event groups

Polynomial Event Semantics

Compositional Poly-concept Semantics

Conclusions

Sample Domain

Individuals	students, classes, days of week, events
Concepts	Student : {bill, john, seth} Cut : events e1 through e6 Class : {peMo, peWd, peFr}
Roles	subj', $ob1'$ as in the table below

event	subj	obj	event	subj	obj
e1	bill	реМо	e4	john	реМо
e2	bill	peWd	e5	seth	peWd
e3	bill	peFr	еб	seth	peFr

Event

▶ e1

[subj: Bill; obj: peMo; action: cut; manner: deliberately; time: yesterday; ...]

Event

▶ e1

 [subj: Bill; obj: peMo; action: cut; manner: deliberately; time: yesterday; ...]

► bM

Sentence Bill cut PeMo.

Tagged sentence (Penn Historical Corpora, etc.) (IP-MAT (NP-Or (NPR Bill)) (Or cut) (NP-OB1 (NPR PEMo)))

Denotation subj'/{bill} □ (Cut □ obj1'/{peMo}) Sentence Bill cut PeMo.

```
Tagged sentence (Penn Historical Corpora, etc.)
(IP-MAT (NP-Or (NPR Bill)) (Or cut) (NP-OB1 (NPR PEMo)))
```

Denotation subj'/{bill} \sqcap (Cut \sqcap obj1'/{peMo})

 $\frac{Model}{\{bM\}}$

Event Semantics

Sentence Bill cut PeMo.

Tagged sentence (IP-MAT (NP-SBJ (NPR Bill)) (VBD cut) (NP-OB1 (NPR PEMo)))

Denotation subj'/{bill} □ (Cut □ obj1'/{peMo})

 $\mathrm{Syntax}\leftrightarrow\mathrm{Denotation}$

Event Semantics

Sentence Bill cut PeMo deliberately.

 $\begin{array}{l} Denotation \\ subj'/\{bill\} \ \sqcap \ (Cut \ \sqcap \ obj1'/\{peMo\}) \ \sqcap \ Deliberate \end{array}$

 $\begin{array}{l} \text{Syntax} \leftrightarrow \text{Denotation} \\ \text{Entailment} \end{array}$

Event Semantics

Sentence Bill cut PeMo after he moved to the new school.

$\begin{array}{l} Denotation \\ subj'/{bill} \ \sqcap \ (Cut \ \sqcap \ obj1'/{peMo}) \\ \ \sqcap \ after'/(subj'/{bill} \ \sqcap \ (Move \ \sqcap \ obj1'/{theNewSchool})) \end{array}$

Syntax \leftrightarrow Denotation Entailment

Outline

Introduction

Event Semantics, peculiarly

▶ Key idea: Event groups

Polynomial Event Semantics

Compositional Poly-concept Semantics

Conclusions

Problem

```
Bill cut PeMo
subj'/{bill} □ (Cut □ obj1'/{peMo})
```

Bill cut every class ???

Bill cut two classes ???

Bill cut no classes ???

Event Groups

Bill cut every class

Evidence (Model)

 $\langle bM, bW, bF\rangle$

Event Groups and Factors

Bill cut two classes (At least two classes)

Evidence (Model):

 $\langle bM, bW \rangle$

Event Groups and Factors

Bill cut two classes (At least two classes)

Evidence (Model):

 $\left\lceil \left< b \mathsf{M}, b \mathsf{W} \right> \left< b \mathsf{W}, b \mathsf{F} \right> \left< b \mathsf{M}, b \mathsf{F} \right> \right\rceil$

Event Groups and Factors

Bill cut two classes (At least two classes)

Evidence (Model): internal choice

 $\{\left\lceil \left\langle \mathsf{b}\mathsf{M},\mathsf{b}\mathsf{W}\right\rangle \left\langle \mathsf{b}\mathsf{W},\mathsf{b}\mathsf{F}\right\rangle \left\langle \mathsf{b}\mathsf{M},\mathsf{b}\mathsf{F}\right\rangle \right\rceil \}$

Evidence (Model): external choice

 $\{ \lceil \langle b\mathsf{M}, b\mathsf{W} \rangle \rceil, \lceil \langle b\mathsf{W}, b\mathsf{F} \rangle \rceil, \lceil \langle b\mathsf{M}, b\mathsf{F} \rangle \rceil \}$

Counting (and existential) quantifiers are inherently ambiguous

Outline

Introduction

Event Semantics, peculiarly

Key idea: Event groups

► Polynomial Event Semantics

Compositional Poly-concept Semantics

Conclusions

Poly-Concept

Syntax

Concept cPoly-Concept $x, y ::= \perp | \mathcal{P}c | \mathcal{N}x | x \sqcup y | x \sqcap y | x \otimes y$

Set-theoretic semantics

Concept	c	A set of individuals	$\{bM, bW\}$
Poly-Concept	x, y	A set of factors	$\{ \left[\langle bM, bW \rangle \langle bM, bW \rangle \right] \}$
Factor	d	A set of groups	$\left[\left< bM, bW \right> \left< bM, bW \right> \right]$
Group	g	A set of individuals	$\langle bM,bW \rangle$

Poly-Concept Operations

 $\mathcal{P}\mathsf{Student}$

 $\{ \lceil \langle \mathsf{bill} \rangle \; \langle \mathsf{john} \rangle \; \langle \mathsf{seth} \rangle \rceil \}$

Narrowing (flattening): $\mathcal{N}x$

 $\bigcup_{d \in x} d$

Additive: $x \sqcup y$

 $x\cup y$

ordinary set-union (of the sets of factors)

Poly-Concept Operations: Group formation

Poly-concept multiplication $x\otimes y$

$$\{d \otimes d' \mid d \in x, d' \in y\}$$

(suppressing empty factors)

Factor multiplication $d \otimes d'$

$$\{g \cup g' \mid g \in d, g' \in d', g \cap g' = \emptyset\}$$

$(\mathcal{P}\mathsf{Student})^n$

 $\begin{array}{ll} (\mathcal{P}\mathsf{Student})^1 & \{ \lceil \langle \mathsf{bill} \rangle \langle \mathsf{john} \rangle \langle \mathsf{seth} \rangle \rceil \} \\ (\mathcal{P}\mathsf{Student})^2 & \{ \lceil \langle \mathsf{bill}, \mathsf{john} \rangle \langle \mathsf{john}, \mathsf{seth} \rangle \langle \mathsf{bill}, \mathsf{seth} \rangle \rceil \} \\ (\mathcal{P}\mathsf{Student})^3 & \{ \lceil \langle \mathsf{bill}, \mathsf{john}, \mathsf{seth} \rangle \rceil \} \\ (\mathcal{P}\mathsf{Student})^4 & \bot \end{array}$

Poly-Concept Operations: Intersection

Poly-concept intersection $x \sqcap y$

 $\{d \sqcap d' \mid d \in x, d' \in y\}$

(suppressing empty factors)

Factor intersection $d_1 \sqcap d_2$

 $d_1^{|d_2|} \ \cap \ d_2^{|d_1|}$

 $\left|d\right|$ is the cardinality of d s groups (all groups within a factor have the same cardinality)

Why can't we just take the intersection of factors?

Outline

Introduction

Event Semantics, peculiarly

Key idea: Event groups

Polynomial Event Semantics

► Compositional Poly-concept Semantics

Conclusions

Compositional Semantics

From a tree to the poly-concept

Poly-concept for NP in a role (e.g., subj)

Proper noun	$\mathcal{P}(subj'/\{properNoun\})$
At least k N	$\begin{array}{l} \bigcup_{s \subset CN, s = k} \prod_{i \in s} \mathcal{P}(subj'/\{i\}) \\ \mathcal{N}x \qquad \text{x is the poly-concept above} \end{array}$
an N	$igcup_{i\inCN}\mathcal{P}(subj'/\{\mathrm{i}\})$ $\mathcal{P}(subj'/CN)$
Every N	$\prod_{i\inCN}\mathcal{P}(subj'/\{i\})$

Counting and existentials are inherently ambiguous

Universals

"cut every class"

 $\{ \left\lceil \langle bM, bW, bF \rangle \langle bM, bW, sF \rangle \langle bM, sW, bF \rangle \langle bM, sW, sF \rangle \\ \langle jM, bW, bF \rangle \langle jM, bW, sF \rangle \langle jM, sW, bF \rangle \langle jM, sW, sF \rangle \right\}$

"Bill cut every class"

 $\{\lceil \langle bM, bW, bF\rangle \rceil\}$

"Every student cut every class"

Ambiguity

"cut every class" $\{ [\langle bM, bW, bF \rangle \langle bM, bW, sF \rangle \langle bM, sW, bF \rangle \langle bM, sW, sF \rangle \}$ $\langle iM, bW, bF \rangle \langle iM, bW, sF \rangle \langle iM, sW, bF \rangle \langle iM, sW, sF \rangle \}$ "subj/A student" $\{ [\langle bM \rangle \langle bW \rangle \langle bF \rangle \langle jM \rangle \langle sW \rangle \langle sF \rangle] \}$ 1 2 {[$\langle bM \rangle \langle bW \rangle \langle bF \rangle$], [$\langle iM \rangle$], [$\langle sW \rangle \langle sF \rangle$]}

"A student cut every class"

- all groups of three events (see above) 1 2
 - $\{[\langle bM, bW, bF \rangle]\}$

- $4 \quad \{ \lceil \langle \mathsf{b}\mathsf{M} \rangle \rceil, \lceil \langle \mathsf{b}\mathsf{W} \rangle \rceil, \lceil \langle \mathsf{b}\mathsf{F} \rangle \rceil, \lceil \langle \mathsf{j}\mathsf{M} \rangle \rceil, \lceil \langle \mathsf{s}\mathsf{W} \rangle \rceil, \lceil \langle \mathsf{s}\mathsf{F} \rangle \rceil \}$
- $3 \qquad \{ \lceil \langle \mathsf{b}\mathsf{M} \rangle \; \langle \mathsf{j}\mathsf{M} \rangle \rceil, \lceil \langle \mathsf{b}\mathsf{W} \rangle \; \langle \mathsf{s}\mathsf{W} \rangle \rceil, \lceil \langle \mathsf{b}\mathsf{F} \rangle \; \langle \mathsf{s}\mathsf{F} \rangle \rceil \}$
- $2 \qquad \{ \lceil \langle \mathsf{b}\mathsf{M} \rangle \ \langle \mathsf{b}\mathsf{W} \rangle \ \langle \mathsf{b}\mathsf{F} \rangle \rceil, \lceil \langle \mathsf{j}\mathsf{M} \rangle \rceil, \lceil \langle \mathsf{s}\mathsf{W} \rangle \ \langle \mathsf{s}\mathsf{F} \rangle \rceil \}$
- $1 \qquad \qquad \{ \left\lceil \langle \mathsf{b}\mathsf{M} \rangle \ \langle \mathsf{b}\mathsf{W} \rangle \ \langle \mathsf{b}\mathsf{F} \rangle \ \langle \mathsf{j}\mathsf{M} \rangle \ \langle \mathsf{s}\mathsf{W} \rangle \ \langle \mathsf{s}\mathsf{F} \rangle \right\rceil \}$
- "A student cut a class"

Counting ambiguity

"Two students cut every class"

- $1 \quad \{ \lceil \langle \mathsf{bM}, \mathsf{bW}, \mathsf{bF}, \mathsf{jM}, \mathsf{sW}, \mathsf{sF} \rangle \rceil \}$
- 2 \perp

Negation

- ▶ Bill cut no class
- ▶ Bill did not cut a class
- ▶ Bill has not cut every class
- Bill cut exactly two classes
- ▶ Bill did not cut exactly two classes

Outline

Introduction

Event Semantics, peculiarly

Key idea: Event groups

Polynomial Event Semantics

Compositional Poly-concept Semantics

► Conclusions

Conclusions

PTQ without Montague

- ▶ with events, without variables
- ▶ with quantifier ambiguity, without QR (or any movements)

Semantics

- ▶ model-theoretical: triple sets
- ▶ proof-theoretical: algebra

Future Work

- ▶ Fully work out negation
- ▶ Infinitival components?
- ▶ Connection with collective readings of quantifiers?
- Semantics of plurals?
- ▶ Modalities and free choice?