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Phenomena
Mary sees everyone’s mother.

John, Mary saw.

Mary saw who?
Who did Mary see?
Whose mother did Mary see?

John’s mother saw him.

Everyonei’s father loves theiri mother.
*Theiri father loves everyonei’s mother.

Who saw who?
*Who did who see ?

Whoi saw hisi mother?
*Whoi did hisi mother see ?

Mary’s present for himi, every boyi saw.
*Every boy his mother likes.



We handle quantification; fronted phrases, in-situ and raised
wh-questions, binding. And more complex things: quantification and
binding, superiority, binding in raised wh-questions, and even more
complex cases.
This talk will only describe superiority; anaphora and its various
interactions are described in the paper.
All these phenomena have been explained in separate ways. What we
strive is uniformity and parsimony: explain all these and more
phenomena using simple means. We want to avoid type raising. In
particular, John here and John there, Mary here and Mary there are
uniformly denoted by the domain constant of the same simple type e.
The last two lines are controversial. The cataphora sounds better if
”Mary’s” is replaced with ”whose”. In general, cataphora is very rare.
Carl Pollard gave two examples, both literary: ”When he woke up,
Roger found that he turned into a rabbit” ”The first dollar he earned is
the businessman longest memory.”



2
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I draw attention to these incorrect phrases, which our theory should
be able to rule out (and it does). It is relatively easy to build a theory
that accepts everything; it’s hard to make the theory more
discriminating. Taking type categorial approach as an example, it is
relatively easy to show something is derivable: one just exhibits the
derivation. It is quite difficult to show something is not derivable. It is
rather hard to prove negative.
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Summary
Developing the approach pioneered by Shan and Barker

Uniformity
I Evaluation order: not fixed left-to-right, demand-driven
I No need for thunks and type raising
I The type of an individual: e, always

Typing
I Assigning types to terms and contexts
I The type of a term describes possible effects of the term
I The type of a term describes what the term produces and

what context the term requires
I Ruling on incomplete phrases

Main result
Both typing and CBN are needed for correct prediction of
superiority and binding in wh-questions with topicalization
while maintaining the uniformity



Here is a brief summary of the rest of the talk, before I get to the
extended introduction.
Again, we strive for uniformity and parsimony, following the approach
established by Shan and Barker. We further develop the approach in
terms of uniformity and typing. We introduce a CBN calculus,
evaluation order is not fixed left-to-right, determined by the demand
on values. Therefore, we need no thunks or type-raising. The calculus
has context as first-class entities.
The calculus is typed; both terms and contexts have types. An
individual is always represented by a term of the type e. Given a term,
we can determine its type – or determine that the term cannot be
given any type. We pronounce such phrases ungrammatical. We can
make this determination even for terms that do not represent complete
sentences. Thus we predict that any sentence including such a phrase
(e.g., a gapped clause with a question word before the gap) is
unacceptable.
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Denotations

Mary saw John.
� see(john,mary)



For unacceptable sentences, we want to describe what is wrong with
them. For acceptable sentences, we wish to give their denotations, in
the form that lets us determine their consequences. We chose to
specify denotations as logic formulas, like this formula in FOL. Here
see is a 2-place predicate and john and mary are constants, or
zero-arity function symbols.
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Denotations

Mary saw John.
� see john mary

john : i
mary: i
see : i→(i→ o)



Instead of FOL, we chose a form of a higher-order classical logic:
simple type theory (STT). I don’t think that I make the use of
higher-order features, but I sure like the notation, like this. Here, see
and john and mary are constants, typed constants. Church, who
originated STT, would give the constants these types.
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Denotations

Mary saw John.
� see john mary

john :e
mary:e
see :e ⇁ e ⇁ t



I would use a more familiar notation for types. The white space in this
formula (juxtaposition) is an application. We already deal with two
languages here: the subject language in which the phrase ‘Mary saw
John’ is written, and the object, or target language of STT in which the
denotation is written. We shall establish the mapping between the
two. Note the different arrow, to emphasize we are talking about
object language and types in that object language.
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Natural language denotations

Mary saw John.
� see john mary
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Natural language denotations

Mary saw John.
� see john mary

Mary sees everyone’s mother.
� ∀c see(mother c) mary

Mary saw who?
� ∂c see c mary

John’s mother saw him.
� see john(mother john)

Who saw who?
� ∂c1∂c2 see c2c1



The first mapping is straightforward, mere local reshuffling. Here, the
quantifier shows up ‘outside’. This is no longer localized reshuffling.
Ditto for questions. The denotation of a question is a characteristic
function of a set of true answers (I guess I do use HOF in STT). In this
example, there is no trace of the pronoun in the object language
phrase. Finally, here our mapping should explain the order of these
bindings. Thus, mapping the subject language to the object language
is not that straightforward. The subject and object languages aren’t
the same: we have pronouns in the subject language but not in the
object language.
We also have the third language: the meta-language, in which we
describe the mapping. So far, the subject language and the
meta-language were both English. They don’t have to be the same: I
were to speak Russian (given this is a Russian session); the
meta-language would have been Russian. Using a natural language to
describe how form relates to meaning is what, I believe, Karttunen
calls ‘paper-and-pencil linguistics’. He submitted that it may not be
enough. A more precise and mechanical ways are needed. For that, we
turn to the dark side, CS. We’ll use the language we all hate to love.
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Computer language denotations

Mary saw J\’on.
� Mary saw Jón.



TeX: the subject language is what we write in the TeX file; the object
language is the typeset text, usually DVI or PDF. The denotation is
what we see on the paper or screen. The metalanguage: TeX or Pascal.
Subject and object languages are certainly different.
Other possible examples: from ML to assembly, or from Prolog to
WAM. Here is our first example: simple mapping. It is akin to this
natural language example. In both cases, the output is essentially like
input, with some localized processing such as dis-inflection.
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Computer language denotations

Mary saw J\’on.
� Mary saw Jón.

Mary saw John. � see john mary
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Computer language denotations

Mary saw J\’on.
� Mary saw Jón.

Mary sees mothers\footnote{of everyone}.
� Mary sees mothers1. · · · · · · 1of everyone



This example is like quantification. The occurrence of ‘footnote’ (the
quantifier) is replaced with some ‘variable’, which is bound
somewhere far on the outside.
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Computer language denotations

Mary saw J\’on.
� Mary saw Jón.

Mary sees mothers\footnote{of everyone}.
� Mary sees mothers1. · · · · · · 1of everyone

Mary sees everyone’s mother. � ∀c see(mother c) mary



6

Computer language denotations

Mary saw J\’on.
� Mary saw Jón.

Mary sees mothers\footnote{of everyone}.
� Mary sees mothers1. · · · · · · 1of everyone

\begin{block}{Sentence}
The type of \insertblocktitle: t\end{block}

� Sentence The type of Sentence: t



Pronouns are pervasive in programming languages and in TeX. For
example, current-date, citation reference, or, this example. Again we
see the correspondence with the natural language. In both cases, the
denotation has no traces of pronouns. Pronouns exists only in subject
language, but not in object language.
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Computer language denotations
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Computer language denotations

Mary saw J\’on.
� Mary saw Jón.

Mary sees mothers\footnote{of everyone}.
� Mary sees mothers1. · · · · · · 1of everyone

\begin{block}{Sentence}
The type of \insertblocktitle: t\end{block}

� Sentence The type of Sentence: t

\def\gap{The type of \insertblocktitle: t}
\begin{block}{Sentence}A few types. \gap\end{block}

� Sentence A few types. The type of Sentence: t



A pronoun does not have to refer to something that textually occurs
before. It may also refer to something that textually occurs after. In
both cases, although textually the reference occurs before the
definition, it is acted upon, or evaluated later.
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Computer language denotations

Mary saw J\’on.
� Mary saw Jón.

Mary sees mothers\footnote{of everyone}.
� Mary sees mothers1. · · · · · · 1of everyone

\begin{block}{Sentence}
The type of \insertblocktitle: t\end{block}

� Sentence The type of Sentence: t

\def\gap{The type of \insertblocktitle: t}
\begin{block}{Sentence}A few types. \gap\end{block}

� Sentence A few types. The type of Sentence: t
Mary’s present for himi, every boyi saw.
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Compilation

Computer Language

Denotation: .obj file

Code generation

Type checking

Parsing and elaboration into Core

Lexing



In computer science, the transformation from a subject to an object
language is typically called compilation. It is a complex process, with
many phases. The bottom two phases are syntactical. That it is not to
say they are easy. Many programming languages aren’t context-free.
Many languages include pre-processors (e.g., Lisp, C, C++, OCaml –
and TeX), which are Turing-complete. Many languages (e.g., SML,
Haskell) are defined by elaboration of a surface syntax into a core. The
core is a simplified, intermediate language, often represented only as
an AST. The compiler type-checks the core language and then
transforms it to an object language (assembly or DVI) – our
denotation.
Other phases are more semantical. The end result is the code in the
object language (e.g., PDF or assembly) – which is the desired
denotation.
Errors may occur on many levels. An error means that the subject
language text is not acceptable, not ‘grammatical’.
The diagram is coarse-grained: parsing is often done in several
phases; code generation may include many optimization phases, etc.
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Compilation

Natural Language Computer Language

Denotation: formula Denotation: .obj file

Determining denotation Code generation

Type checking Type checking

Parsing, dis-inflection, . . . Parsing and elaboration into Core

Lexing, Segmentation Lexing



We note that ‘understanding’ natural language, deriving meaning from
an utterance, is also a process with many phases. Here too errors may
occur on many levels. An error means that there is something wrong
with the sentence: spelling error, incorrect conjugation, wrong word
order – or more subtle problems demonstrated in the phrases at the
beginning. These subtle problems show up at these higher stages,
when determining denotation.
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Compilation

Natural Language Computer Language

Denotation: formula Denotation: .obj file
↖↗

Determining denotation Code generation
↖↗

Type checking Type checking
↖↗

Parsing, dis-inflection, . . . Parsing and elaboration into Core
↖↗

Lexing, Segmentation Lexing



But is this analogy good enough for us, to base our decisions on?
Natural languages are very ambiguous.
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Compilation

Natural Language Computer Language

Denotation: formula Denotation: .obj file
↖↗ ↖↗

Determining denotation Code generation
↖↗ ↑

Type checking Type checking
↖↗ ↖↗

Parsing, dis-inflection, . . . Parsing and elaboration into Core
↖↗ ↑

Lexing, Segmentation Lexing



But so are computer languages. Ambiguity first comes in parsing:
OCaml grammar has numerous shift/reduce conflicts. The conflicts
are resolved by precedence rules and various heuristics like the max
munch rule. There are also ambiguity in the evaluation order, in
OCaml. The same OCaml program, compiled with two different
compilers may give different results. Scheme, OCaml and C and many
languages are deliberately underspecified.
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Compilation

Natural Language Computer Language

Denotation: formula Denotation: .obj file
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Normally though, a particular compiler given a particular set of
compilation flags and a particular moon phase – yes, it has been
known to matter – arbitrarily resolves the conflict, so we have this.
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Compilation

Natural Language Computer Language

Denotation: formula Denotation: .obj file
↑ ↑

Determining denotation Code generation
↑ ↑

Type checking Type checking
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Parsing, dis-inflection, . . . Parsing and elaboration into Core
↖↗ ↑

Lexing, Segmentation Lexing



For natural languages, we assume this. Ambiguity is somehow
resolved at the syntactic level, so mapping from the core to denotation
is deterministic. That is our working assumption.
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Compilation

Natural Language Computer Language

Denotation: formula Denotation: .obj file
↑ ↑

Determining denotation Code generation
↑ ↑

Type checking Type checking
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Parsing, dis-inflection, . . . Parsing and elaboration into Core
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In the following, we will be dealing only with the following portion:
mapping from the Core language, intermediate language, to the
denotation. The role of the type system: to delineate a set of terms
whose reduction never fails to produce denotation. That is, we’d like
errors to be reported at the type-checking stage. We’d like
code/denotation generation to be error free: deterministic and total.
Being well-typed is thus an alternative criterion of grammaticality.
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Specifying rewriting rules

Mary sees John. Subject language
∴ mary \(see / john) elaborated to Core language
� see john mary compiled to Object language: denotation



Let us state our goals more precisely. We have this subject language
phrase. Parsing and elaboration gives us a phrase in the core
language. And from it we wish to produce the denotation, a phrase in
the object language, STT. The first part, elaboration, production of the
core language phrase, is outside the scope of this research. We assume
that we are somehow given this, and have to produce this. What is
this core language? One may think it is similar to TeX: it includes the
object language (ordinary words) as literal constants, and adds
markup. Our core language here likewise includes the object
language, STT, literally (as literal constants). It also adds phonetically
silent ‘markup’, so to speak.
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Specifying rewriting rules

Mary sees John. Mary sees John’s mother.
∴ mary \(see / john) ∴ mary \(see /(john \mother))
� see john mary � see(mother john) mary



The rewriting rules should be compositional. If we re-write as in the
first example, we expect the result of the second example to be like
this. So, our goal is to specify this highlighted relation, the re-writing
rules. One can do this in many ways. We note that this kind of
compositional re-writing is similar to evaluation in lambda-calculus.
The operational semantics of lambda-calculus is re-writing!
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Specifying rewriting rules

Mary sees John. Mary sees John’s mother.
∴ mary \(see / john) ∴ mary \(see /(john \mother))
� see john mary � see(mother john) mary

/
def= λ!u. λ!v. uv

\ def= λ!u. λ!v. vu



So, our intermediate, core language is lambda-calculus! Typed
lambda-calculus, as we shall see soon. This is indeed the case for
many programming languages, like ML and Haskell. So, the re-writing
rules, the compilation of the core to denotation – is the evaluation of
lambda-expressions. Denotations are computed. Indeed, if we assume
these definitions, core phrases evaluate to the denotations. Disregard
exclamation marks on these lambdas for now.
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Non-compositionality: Questions

Mary saw who?
∴ mary \(see / who)



So far, so good: semantics is compositional, and so are evaluation
rules. Alas, semantics can also appear non-compositional, for
example, in questions. Can we deal with that?
‘Who’ as the ‘breakpoint’ in natural languages.
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Non-compositionality: Questions

Mary saw who?
∴ # $ mary \(see / who) who def= t

t| f. ∂c(f $ c)



Yes, with the help of control operators, e.g., shift. The subject phrase
is elaborated into the following term in our calculus. We see
operations shift, plug and the top context (top co-term). We see how
they work on the example of the detailed derivation.
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Non-compositionality: Questions

Mary saw who?
∴ # $ mary \(see / who) who def= t

t| f. ∂c(f $ c)
= # $ mary \(see / t

t| f. ∂c(f $ c))
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Non-compositionality: Questions

Mary saw who?
∴ # $ mary \(see / who) who def= t

t| f. ∂c(f $ c)
= # $ mary \(see /tt| f. ∂c(f $ c))



We substitute the definition of ‘shift’. We determine the delimited
context of shift. A context is what remains of a term if we take out
shift and leave out the hole. A delimited context: we consider not the
whole term but rather a subterm, starting with the closest plug. In this
case, it is the whole term... We then do shift-transition: we replace the
whole subterm with the body of shift plugged into the empty context.
We also bind the removed context, the yellow part, to a co-variable
here.
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Non-compositionality: Questions

Mary saw who?
∴ # $ mary \(see / who) who def= t

t| f. ∂c(f $ c)
= # $ mary \(see /tt| f. ∂c(f $ c))

; # $ ∂c(f $ c) f def= # $ mary \(see /[ ])
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Non-compositionality: Questions

Mary saw who?
∴ # $ mary \(see / who) who def= t

t| f. ∂c(f $ c)
= # $ mary \(see /tt| f. ∂c(f $ c))

; # $ ∂c(f $ c) f def= # $ mary \(see /[ ])
= # $ ∂c(# $ mary \(see /[ ]) $ c)
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We have plugged the hole. We now do regular beta-reductions.
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Non-compositionality: Questions

Mary saw who?
∴ # $ mary \(see / who) who def= t

t| f. ∂c(f $ c)
= # $ mary \(see /tt| f. ∂c(f $ c))

; # $ ∂c(f $ c) f def= # $ mary \(see /[ ])
= # $ ∂c(# $ mary \(see /[ ]) $ c)
; # $ ∂c(# $ mary \(see /c))
; # $ ∂c(# $ see c mary)



see c mary is a value: an object language constant. A value plugged
into the top context reduces to itself. We thus discharge the top
context, again and again, until we obtain the final result.
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Non-compositionality: Questions
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Non-compositionality: Gaps

John, Mary saw.
∴ # $ john \\(# $ mary \(see / )) def= t

t| f. λx.(f $ x)
\\ def= λx. λy. y // x
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Non-compositionality: Gaps

John, Mary saw.
∴ # $ john \\(# $ mary \(see / )) def= t

t| f. λx.(f $ x)
\\ def= λx. λy. y // x

; # $ john \\(# $ mary \(see /tt| f. λx.(f $ x)))



Note the occurrences of plug inside. The context now is truly
delimited.
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Non-compositionality: Gaps

John, Mary saw.
∴ # $ john \\(# $ mary \(see / )) def= t

t| f. λx.(f $ x)
\\ def= λx. λy. y // x

; # $ john \\(# $ mary \(see /tt| f. λx.(f $ x)))
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))



We were able to uniformly analyze questions and raised phrases. Can
we handle more complex cases, like raised questions? Which of the
two control operators to do first? Left-to-right? Can we substitute who
as it is? In our calculus, we can. We get to the result we’ve seen,
which is quite satisfying from the point of view of uniformity. The
raised question is transformed to the in-situ question.
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))
; # $ (tt| f. ∂c(f $ c)) \\ (# $ mary \(see / ))



If we evaluate left-to-right, we would get this...
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))
; # $ (# $ mary \(see / )) // who
; # $ (# $ mary \(see /tt| f. λx.(f $ x))) // who

\\ def= λx. λy. y // x



But that is not what happens. The top operation here is \\; Here we
recall its definition. Note the regular lambda. It is a non-strict
operation: it permutes the terms without evaluating them. Now we
get this. The // operation is eliminated by a beta-redex. We need to
see if the first operand is a lambda-expression; we need to evaluate it.
That is what we do now.
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))
; # $ (# $ mary \(see / )) // who
; # $ (# $ mary \(see /tt| f. λx.(f $ x))) // who
;+ # $ (λx.# $ mary \(see /[ ]) $ x) // who
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))
; # $ (# $ mary \(see / )) // who
; # $ (# $ mary \(see /tt| f. λx.(f $ x))) // who
;+ # $ (λx.# $ mary \(see /[ ]) $ x) // who



Should we evaluate who now? No, we see // operation and the
regular, un-annotated λ. In CBN, the beta-reduction substitutes the
argument of the application as it is.
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))
; # $ (# $ mary \(see / )) // who
; # $ (# $ mary \(see /tt| f. λx.(f $ x))) // who
;+ # $ (λx.# $ mary \(see /[ ]) $ x) // who
; # $ # $ mary \(see / who)



And so we get this: which is equal to the result of elaboration of the
in-situ question ‘Mary saw who?’ We have thus transformed a raised
question to an in-situ one. We have already computed the denotation
for the in-situ question, which is this.
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Two effects: Raised questions

Who did Mary see?
∴ # $ who \\(# $ mary \(see / ))
; # $ (# $ mary \(see / )) // who
; # $ (# $ mary \(see /tt| f. λx.(f $ x))) // who
;+ # $ (λx.# $ mary \(see /[ ]) $ x) // who
; # $ # $ mary \(see / who)
;+ ∂c(see c mary)
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who



Now we have three control operators, three control effects. We first
proceed as before, taking advantage of the fact \\ permutes the terms
as they are. As before, // needs to evaluate the left argument. Now, we
have two control operators in the left argument. Which to do first? We
recall the definition of \ and /. Note these marks on lambda:
strictness marks. These lambdas demand values: applications
involving these lambdas must evaluate the argument. Note, the
left-most is evaluated first. So, trace is evaluated, as the left argument
of the top-most operator, \
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who

/
def= λ!u. λ!v. uv

\ def= λ!u. λ!v. vu
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who
= # $ (# $ \ (see / who)) // who
;+ # $ (# $ who \(see / who))
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who
= # $ (# $ \ (see / who)) // who
;+ # $ (# $ who \(see / who))



We again have the same dilemma: which of two who to deal with first.
Again, the strictness, or the demand for values, decides.
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who
= # $ (# $ \ (see / who)) // who
;+ # $ (# $ who \(see / who))
;+ # $ (# $ ∂c1(# $ c1 \ (see / who)))
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who
= # $ (# $ \ (see / who)) // who
;+ # $ (# $ who \(see / who))
;+ # $ (# $ ∂c1(# $ c1 \ (see / who)))
;+ # $ # $ ∂c1(# $ ∂c2(# $ c1 \ (see /c2)))
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Superiority

Who saw whom?
∴ # $ who \\(# $ \ (see / who))
;+ # $ (# $ \ (see / who)) // who
= # $ (# $ \ (see / who)) // who
;+ # $ (# $ who \(see / who))
;+ # $ (# $ ∂c1(# $ c1 \ (see / who)))
;+ # $ # $ ∂c1(# $ ∂c2(# $ c1 \ (see /c2)))
;+ ∂c1(∂c2(see c2c1))
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*Superiority

*Who did who see?
∴ # $ who \\(# $ who \(see / ))
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*Superiority

*Who did who see?
∴ # $ who \\(# $ who \(see / ))
;+ # $ (# $ who \(see / )) // who
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*Superiority

*Who did who see?
∴ # $ who \\(# $ who \(see / ))
;+ # $ (# $ who \(see / )) // who
;+ # $ (∂c1(# $ c1 \ (see / ))) // who



A bit simplified. Beta-reduction cannot be performed. We are stuck.
Computing denotation may fail. Which we take as an indication of the
sentence to be ungrammatical.
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CBN λtt| -calculus

Primitive Constants D : : = john | mary | see | tall | mother
Constants C : : = D | CC | c | ∀c | ∂c
Terms E, F : : = V | x | F // E | E / F | Q $ E | tt|k : S. E
Values V : : = C | u | λx :T. E | W
Strict Values W : : = λ!u:U. E
Coterms Q : : = k | # | E, Q | Q;! W | E,c Q | Q;c V
Term equalities
Q $ F // E = E, Q $ F Q $ W // E = Q;! W $ E
Q $ F / E = E,c Q $ F Q $ V / E = Q;c V $ E
# $ V = V

Transitions
Q1 $ · · · $ Qn $ (λx. E) // F ; Q1 $ · · · $ Qn $ E{x 7→ F}
Q1 $ · · · $ Qn $ (λ!x. E) // V ; Q1 $ · · · $ Qn $ E{x 7→ V}
Q1 $ · · · $ Qn $ C1 / C2 ; Q1 $ · · · $ Qn $ C1C2
Q1 $ · · · $ Qn $ Q $ t

t|k. E ; Q1 $ · · · $ Qn $ # $ E{k 7→ Q}
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# $ V = V

Transitions
Q1 $ · · · $ Qn $ (λx. E) // F ; Q1 $ · · · $ Qn $ E{x 7→ F}
Q1 $ · · · $ Qn $ (λ!x. E) // V ; Q1 $ · · · $ Qn $ E{x 7→ V}
Q1 $ · · · $ Qn $ C1 / C2 ; Q1 $ · · · $ Qn $ C1C2
Q1 $ · · · $ Qn $ Q $ t

t|k. E ; Q1 $ · · · $ Qn $ # $ E{k 7→ Q}



Symmetry of shift and lambda: both are binding forms; one binds a
variable, the other binds a co-variable. When lambda-abstraction is
applied, it takes a term on the right and substitutes into the body.
When shift is applied, it takes a co-term on the left and substitutes
into the body.
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Types

Types T : : = U | S ↓ U
Pure types U : : = U ⇀ T | T → T | B
Base types B : : = t | e | B ⇁ B
Cotypes S : : = U ↑ U

Typing of constants
john : e mary : e

tall : e ⇁ t mother : e ⇁ e

see : e ⇁ e ⇁ t c : e

∀c : t ⇁ t ∂cB : B ⇁ (e ⇁B)

C1 : (B2 ⇁ B) C2 : B2

C1C2 : B



We note that types can be pure U (or, imposing no constraint on the
contexts they may appear in, except that the context should accept a
value of the type U), and impure S ↓ U. The latter require the context
to handle the effect (in the simlest case: the context should handle the
execption.)
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Typing judgments: arrow introduction

[u : U]
···

E : T
λ!

λ!u:U. E : U ⇀ T

[x : T1]···
E : T2

λ
λx :T1. E : T1 → T2

[k : S]
···

# $ E : U t
t|t

t|k : S. E : S ↓ U

[u : U1]···
Q $ u : U2 ↑I
Q : U1 ↑ U2



19

Typing judgments: arrow elimination

E1 : (B2 ⇁ B) E2 : B2
⇁E

E1 / E2 : B
F : U1 ⇀ T E : U2 U2 ≤ U1

⇀E
F // E : T

F : U1 ⇀ T1 E : U2 ↑ UI ↓ UR

[u : U2 k : UI ↑ UR]
···

k ¢ Fu : T
⇀E1F // E : T

F : T1 → T E : T2 T2 ≤ T1 →E
F // E : T

F : U1 ↑ UI ↓ UR E : T2

[u : U1 k : UI ↑ UR]
···

k ¢ uE : T →E1F // E : T

Q : U1 ↑ U E : U2 U2 ≤ U1 ↑E
Q $ E : U

Q : S1 E : S2 ↓ U S1 ≤ S2 ↓E
Q $ E : U
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Typing judgments: effect composition

Q : UI ↑ UR E : U
¢UQ ¢ E : U ↑ UI ↓ UR

Q : UI ↑ UR E : S ↓ U2 U2 ≤ UI ¢TQ ¢ E : S ↓ UR
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Subtyping

T ≤ T
U ≤ UA UI ≤ UR

U ≤ UA ↑ UI ↓ UR

U′
A ≤ UA TR ≤ T′

R
(UA ⇀ TR) ≤ (U′

A ⇀ T′
R)

T′
A ≤ TA TR ≤ T′

R
(TA → TR) ≤ (T′

A → T′
R)

(UA ⇀ TR) ≤ (U′
A ⇀ T′

R)
(UA ⇀ TR) ≤ (U′

A → T′
R)

UA ≤ U′
A U′

I ≤ UI UR ≤ U′
R

(UA ↑ UI ↓ UR) ≤ (U′
A ↑ U′

I ↓ U′
R)

U′
A ≤ UA UI ≤ U′

I
(UA ↑ UI) ≤ (U′

A ↑ U′
I)



Subtyping essentially shows that a pure term can always be used
where an effectful term is expected, and if the function whose
argument is of the pure type is expected, a corresponding strict
function can be used instead.
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*Superiority revisited

*Who did who see?
∴ # $ who \\(# $ who \(see / ))

who \(see / ) :/ T



We saw the evaluation of that phrase failed. If we apply the typing
rules, we see that the term cannot be typed. Moreover, we can see that
even this subterm cannot be typed. This subterm cannot be evaluated:
there are two control operators, but there are no plugs. But we can
attempt to type such terms nevertheless. This term does not type:
details are in the paper. This term corresponds to an incomplete
phrase, ‘who see trace’. We predict that any sentence with that phrase
ungrammatical.
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*Superiority revisited

*Who did who see?
∴ # $ who \\(# $ who \(see / ))

who \(see / ) :/ T

*· · ·who see · · ·
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Conclusions

I Typed CBN calculus with delimited control
I Improvement in uniformity and typing. No type raising
I Types reflect effects, show context-dependence
I Uniform analyses avoiding overgeneration require both

CBN and typing
I Types permit ruling on incomplete sentences
I The calculus implemented

All analyses mechanically verified

Linguistics offers the first interesting application of the typed
CBN shift/reset



We introduce a type system to delineate a set of terms whose
reduction never fails to produce denotation. Being well-typed is thus
an alternative criterion of grammaticality. Typeability, unlike
reducibility, has an advantage of being applicable to separate phrases
rather than the whole sentences.
Both typing and CBN are needed for correct prediction of superiority
and binding in wh-questions with topicalization while maintaining the
uniformity.
The calculus (dynamic and static semantics) has been implemented,
and all the analyses have been mechanically verified.Color-coding


