
Delimited Continuations in CS and

Linguistics1

Oleg Kiselyov (FNMOC)

Chung-chieh Shan (Rutgers University)

December 4, 2007

Research Center for Language, Brain and Cognition

Tohoku University, Sendai, Japan

1Many helpful conversations with Rui Otake are gratefully acknowledged

Delimited Continuations in CS and

Linguistics1

Oleg Kiselyov (FNMOC)

Chung-chieh Shan (Rutgers University)

December 4, 2007

Research Center for Language, Brain and Cognition

Tohoku University, Sendai, Japan

1Many helpful conversations with Rui Otake are gratefully acknowledged

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

I am very grateful indeed to Professor Yoshimoto and to Rui Otake for

organizing this meeting and giving me the opportunity to talk on my

favorite subject.

?

Summary

Contexts and (delimited) control

Applications in Computer Science (backtracking, OS, Web,. . .)

Hints of linguistic applications

Dynamic Binding and Anaphora

Generating by jumping back-and-forth

Generating code, sentences, denotations in out-of-lexical-order

Type systems, CPS

CPS, double negation translation, type systems for ((delimited)

control) effects formalize as a substructural logic

Types are abstract expressions (Cousot)

The colon is a turnstile (Lambek)

Code online
http://okmij.org/ftp/Computation/Continuations.html

Summary

Contexts and (delimited) control

Applications in Computer Science (backtracking, OS, Web,. . .)

Hints of linguistic applications

Dynamic Binding and Anaphora

Generating by jumping back-and-forth

Generating code, sentences, denotations in out-of-lexical-order

Type systems, CPS

CPS, double negation translation, type systems for ((delimited)

control) effects formalize as a substructural logic

Types are abstract expressions (Cousot)

The colon is a turnstile (Lambek)

Code online
http://okmij.org/ftp/Computation/Continuations.html

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Summary

To my shame I do not know the audience, and so I biased the talk to

be motivational rather than formal. Another bias of the talk is towards

computation (evaluation), even when analyzing linguistic

phenomena. I am a Computer Scientist, and this bias is hard to

overcome. Since continuations can be rather tricky, albeit only

superficially so, it might not be immediately clear that my points make

sense. Please do interrupt me and ask to clarify. If confusion is

allowed to persist, it will only grow.

Outline

I Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

CPS and types

Summary

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

Before considering linguistic applications, let us talk about

continuations in the broader context of Computer Science, where they

may be easier to describe.This print expression is the whole program,

which we want to run. To this end, we first focus (technical term) on

the (sub)expression 2 ∗ 3 so to compute it first. If we cut this

expression from the program, what is left is a program with the hole.

The hole is the place where 2 ∗ 3 used to be and which we later fill

with the result of evaluating 2 ∗ 3. The expression with the hole is

called context. The undelimited continuation is the meaning of the

context. It is a function from what me may put in the hole (integers in

our case) to . . . well, the result of the whole program. This is what

computed when the whole program is fully finished – and so this

value is not of much interest to the program itself as the program will

never get to use this value.

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

When the result is computed, the program is already dead. For

example, we usually don’t care of the value computed by our e-mail

program. We are much more interested in what the e-mail program

does before it finishes or dies (i.e., has it sent the message or not).

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

Beside the full context, we may also want to consider its prefix. That

is, we may (mentally, for now) distinguish a subterm of a program,

42 + abs(2 ∗ 3). We may imagine a boundary within print(). Taking

out 2 ∗ 3 leaves a hole in our subterm just as it did in the whole

program. This subterm with a hole is called a partial (evaluation)

context, whose meaning is a partial continuation. (The subterm with a

hole can be plugged into a bigger hole). The partial continuation is

also a function, also from integers in our case (the type of the values

that can be placed in the hole, e.g., the result of evaluating 2 ∗ 3).

Now, however, we do care of the produced result (also called the

answer), since we can do something meaningful with it: plug into a

hole. So, the delimited continuation in our case is a function from int

to int, namely, the function that takes an integer and adds to its

absolute value 42.

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(6))

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(6))

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

Let us observe what happens with the partial context as we are

evaluating the term. We see the context shrinks as subterms are

reduced and are replaced with values.

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if 6>0 then 6 else neg(6))

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if 6>0 then 6 else neg(6))

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

We also see the partial context expand when functions are invoked

and their bodies are inlined.

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if true then 6 else neg(6))

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + 6)

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

Finally, our distinguished subterm is reduced to a single value and is

no longer useful to distinguish it. Nothing can ever happen to 48.

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them

or not

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Continuations are the meanings of evaluation contexts

So, the boundary and the yellow thing it envelops disappear. I

apologize for the triviality of all of this. Things will become more

complex very soon. We will also make the notions of disappearing
boundaries and plugging of the hole precise.

Whether we are concerned with the continuations or not, they are
always present.

(Delimited) continuations are the meanings of (delimited) evaluation

contexts.

Control effects: Process scheduling in OS

Operating system, User process, System call

schedule(main () {... read(file) ...}) ...

Control effects: Process scheduling in OS

Operating system, User process, System call

schedule(main () {... read(file) ...}) ...
2

0
0

7
-1

2
-0

6

Delimited Continuations in CS and Linguistics

Delimited continuations

Control effects: Process scheduling in OS

Let us consider a different example: the OS has invoked a user

process, and the process is about to make a system call, that is,

request the OS, the supervisor, to read from a given file. The slide
shows the state of the whole program at this point.

Now it makes great sense to distinguish the subterm that represents

the user program (in yellow) from the rest. This is the kernel-user

boundary. This example also makes it clear why we usually don’t care

of the result of the whole program: when the OS returns a result it is

because it crashed, at which point we quickly reboot.

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Control effects: Process scheduling in OS

We do one step of evaluation, and see the different picture from the

one in the earlier example. All spread-out yellow stuff has

disappeared in one step, replaced with this term

ReadRequest(PCB,file). Such a behavior is characteristic of control

effects. But the yellow stuff is not gone, it is somehow ‘saved’ in the

value we call here PCB, or, the process control block in the OS

parlance. How the context is saved is not important for us now. We

only need to know that the saved context can be restored.

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Control effects: Process scheduling in OS

When the OS gets around to reading from a file, it does the following

operation. The next reduction is:

Control effects: Process scheduling in OS

Capture, Invoke

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

Control effects: Process scheduling in OS

Capture, Invoke

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Control effects: Process scheduling in OS

We get the picture very similar to the original one, only with "read

string" in place of read(file).

We have seen thus the two control operations on the contexts:

capturing a context (saving it in a value like PCB) and restoring it. The

latter operation takes the captured context (PCB), a value (”read

string”), plugs the value into the saved context and puts the result in

the context of the restoring operation. It is easy to see that this

context invocation looks exactly like the function application (cf the

invocation of abs(6) in the first example).

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

User-level control operations ⇒ user-level scheduling, thread

library

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

User-level control operations ⇒ user-level scheduling, thread

library2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Control effects: Process scheduling in OS

The operations of capturing and resuming are obviously special, here

in the sense that only OS can do them. One may imagine context

capturing and restoring available to user programs, too. We can then
implement user-level threads and write scheduling libraries.

Captured continuation can be invoked once, none, or several times.

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

debug run(42 + abs(2 * 3))

first-class delimited continuations ⇒ a programmable debugger
I Back-tracking search (what if?), non-determinism

I Enumerator inversion: tracing a loop

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

debug run(42 + abs(2 * 3))

first-class delimited continuations ⇒ a programmable debugger
I Back-tracking search (what if?), non-determinism

I Enumerator inversion: tracing a loop

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Control effects as debugging

We note that we don’t have to resume from the breakpoint at all. But

we did execute resume (BP1,3), which restored the context, replaced

the breakpoint expression with 3, and continued running the
program. Suppose we don’t like the computed result, 48 in our case.

We still possess the captured continuation saved as BP1. We can
resume it again, with a different value. So, we can do backtracking

and implement non-determinism.

If the context capturing and restoring were available to the user

program rather than to the debugger only, our program could support

non-determinism. We could also trace a loop (aka the enumerator

inversion, ref. the CONTEXT poster), to pace it.

Reset

“#” is the identity continuation (reset []). “$” plugs in a term.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a “too hot” a “. ”)

; # $ “Goldilocks said: ” a (# $ “This porridge is ” a “too hot. ”)

; # $ “Goldilocks said: ” a (# $ “This porridge is too hot. ”)

; # $ “Goldilocks said: ” a “This porridge is too hot. ”

; # $ “Goldilocks said: This porridge is too hot. ”

; “Goldilocks said: This porridge is too hot. ”

Reset

“#” is the identity continuation (reset []). “$” plugs in a term.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a “too hot” a “. ”)

; # $ “Goldilocks said: ” a (# $ “This porridge is ” a “too hot. ”)

; # $ “Goldilocks said: ” a (# $ “This porridge is too hot. ”)

; # $ “Goldilocks said: ” a “This porridge is too hot. ”

; # $ “Goldilocks said: This porridge is too hot. ”

; “Goldilocks said: This porridge is too hot. ”

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Reset

A brief explanation of the tale “Goldilocks and the Three Bears” and

how come Goldilocks tasted the porridge, and what happened next.

Goldilocks managed to escape.
If operations to capture and restore contexts were available to user

programs, what form would they take? We describe the most common
control operators, shift and reset. We start with reset. We introduce a

special infix operator, called plug, $, which takes a context on the left

and a term on the right, and represents the filling of the hole in the
context with the right argument. In order to use plug, we need some

context for its left operator: we define #, as the trivial context, made

of the hole only. Filling the hole with the value v gives us back v no
matter what v is.

The evaluation, better done by hand, illustrates two things: evaluating

terms in the presence of $ and eliminating the $.

Shift

“Pk.” removes and binds k to a continuation.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

; # $ “Goldilocks said: ” a

(# $ ((# $ “This porridge is ” a [] a “. ”) $ “too hot”) a

((# $ “This porridge is ” a [] a “. ”) $ “too cold”) a

((# $ “This porridge is ” a [] a “. ”) $ “just right”))

Shift

“Pk.” removes and binds k to a continuation.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

; # $ “Goldilocks said: ” a

(# $ ((# $ “This porridge is ” a [] a “. ”) $ “too hot”) a

((# $ “This porridge is ” a [] a “. ”) $ “too cold”) a

((# $ “This porridge is ” a [] a “. ”) $ “just right”))

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Shift

shift captures the context up to and including the closest $ and #

behind it.

Shift

“Pk.” removes and binds k to a continuation.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

; # $ “Goldilocks said: ” a

(# $ (# $ “This porridge is ” a “too hot” a “. ”) a

(# $ “This porridge is ” a “too cold” a “. ”) a

(# $ “This porridge is ” a “just right” a “. ”))

; · · ·

; “Goldilocks said:
This porridge is too hot.
This porridge is too cold.
This porridge is just right. ”

Shift

“Pk.” removes and binds k to a continuation.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

; # $ “Goldilocks said: ” a

(# $ (# $ “This porridge is ” a “too hot” a “. ”) a

(# $ “This porridge is ” a “too cold” a “. ”) a

(# $ “This porridge is ” a “just right” a “. ”))

; · · ·

; “Goldilocks said:
This porridge is too hot.
This porridge is too cold.
This porridge is just right. ”

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Shift

shift replaces the captured context with #$ followed by its body, with

all occurrences of k being replaced by the captured context.

Why we need to insert a plug before the body of the shift in the

replacement of the captured context: to serve as a delimiter, the

closest plug, in case the body of shift includes other shifts. The plug in

the captured continuation will act as the closest plug when the

continuation is restored. So, we are statically assured that

“Goldilocks said” will never be in the captured continuation no matter

what the body of the shift is or does.

Terms E, F ::= V | FE | C $ E | Pk. E

Values V ::= x | λx. E

Coterms C ::= k | # | E, C | C; V

Types T ::= U | S ↓ T

Pure types U ::= U → T | string | int | · · ·

Cotypes S ::= U ↑ T

Transitions

C1 $ · · · $ Cn $ (λx. E)V ; C1 $ · · · $ Cn $ E{x 7→ V}

C1 $ · · · $ Cn $ C $ (Pk. E) ; C1 $ · · · $ Cn $ # $ E{k 7→ C}

Terms E, F ::= V | FE | C $ E | Pk. E

Values V ::= x | λx. E

Coterms C ::= k | # | E, C | C; V

Types T ::= U | S ↓ T

Pure types U ::= U → T | string | int | · · ·

Cotypes S ::= U ↑ T

Transitions

C1 $ · · · $ Cn $ (λx. E)V ; C1 $ · · · $ Cn $ E{x 7→ V}

C1 $ · · · $ Cn $ C $ (Pk. E) ; C1 $ · · · $ Cn $ # $ E{k 7→ C}

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Now we formalize the hand-waving about the hole and its filling. It is

nice to be fully explicit once in a while.

If we disregard the red stuff, the calculus is the familiar simply-typed
lambda-calculus.

Note that some terms are syntactically classified as values. Note the

symmetry in the reductions rules for lambda and shutu.

Structural rules express evaluation order

C $ FE = E, C $ F C $ VE = C; V $ E V = # $ V

$
(
V1(V2V3)

)
V4 = (V4,#) $ V1(V2V3)

=
(
V2V3, (V4,#)

)
$ V1

=
(
(V4,#); V1

)
$ V2V3

Our coterm type T ↑ T′ is T′/$T.

Our impure term type T ↓ T ′ is T\$T′.

Structural rules express evaluation order

C $ FE = E, C $ F C $ VE = C; V $ E V = # $ V

$
(
V1(V2V3)

)
V4 = (V4,#) $ V1(V2V3)

=
(
V2V3, (V4,#)

)
$ V1

=
(
(V4,#); V1

)
$ V2V3

Our coterm type T ↑ T′ is T′/$T.

Our impure term type T ↓ T ′ is T\$T′.

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Delimited continuations

Structural rules express evaluation order

The structural rules are equalities and can be applied in any order.

Reset: dynamic semantics

Alternate between refocusing and reducing.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a “too hot” a “. ”)

= #; (“Goldilocks said: ”a) $
(#; (“This porridge is ”a) $ “too hot” a “. ”)

; #; (“Goldilocks said: ”a) $
(#; (“This porridge is ”a) $ “too hot. ”)

= #; (“Goldilocks said: ”a) $ (# $ “This porridge is ” a “too hot. ”)

; #; (“Goldilocks said: ”a) $ (# $ “This porridge is too hot. ”)

= # $ “Goldilocks said: ” a “This porridge is too hot. ”

; # $ “Goldilocks said: This porridge is too hot. ”

= “Goldilocks said: This porridge is too hot. ”

Shift: dynamic semantics

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

= #; (“Goldilocks said: ”a) $
(
(“. ”, (#; (“This porridge is ”a))); a

)
$

(

Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”)
)

; #; (“Goldilocks said: ”a) $ # $
(
(((“. ”, (#; (“This porridge is ”a))); a) $ “too hot”) a

(((“. ”, (#; (“This porridge is ”a))); a) $ “too cold”) a

(((“. ”, (#; (“This porridge is ”a))); a) $ “just right”)
)

= #; (“Goldilocks said: ”a) $ # $
(
(# $ “This porridge is ” a “too hot” a “. ”) a

(# $ “This porridge is ” a “too cold” a “. ”) a

(# $ “This porridge is ” a “just right” a “. ”)
)

; · · ·

Outline

Delimited continuations

I Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

CPS and types

Summary

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Examining the stack

Dynamic binding: summary

If the function dynamically binds the current (working directory,

locale, etc) binding, the binding is available not only inside the

function but also in every invoked function. The absence of closure

with dynamic binding is characteristic.

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Many implementations

I Pass implicit argument (dynamic environment) everywhere

I Global mutable cells (shallow binding)

I . . .

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Many implementations

I Pass implicit argument (dynamic environment) everywhere

I Global mutable cells (shallow binding)

I . . .

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Many implementations

I Pass implicit argument (dynamic environment) everywhere

I Global mutable cells (shallow binding)

I . . .

context as an implicit, ever-present argument

Anaphora and context marks

Goldilocks said the porridge is too hot for her.

Anaphora and context marks

Goldilocks said the porridge is too hot for her.

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Examining the stack

Anaphora and context marks

As we are taught in school: to resolve a pronoun, look through the

context for the appropriate noun.

Anaphora and context marks

“Goldilocks” a “ said the porridge is too hot.”

Anaphora and context marks

(“Goldilocks”a)(#$“ said the porridge is too hot.”)
; “Goldilocks said the porridge is too hot.”

Anaphora and context marks

(interp “Goldilocks”)(# $ String “ said the porridge is too hot.”)

interp str = function

| String x -> str a x

Anaphora and context marks

(interp “Goldilocks”)(# $ String “ said the porridge is too hot.”)

interp str = function

| String x -> str a x
2

0
0

7
-1

2
-0

6

Delimited Continuations in CS and Linguistics

Examining the stack

Anaphora and context marks

We will drop the String to ease the notation

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ” a her a “.”)

interp str = function

| String x -> str a x

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

;

(interp “Goldilocks”)(# $ Req(Female, k))

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

;

(interp “Goldilocks”)(# $ Req(Female, k))

;

(interp “Goldilocks”)
(# $ “ said the porridge is too hot ” a “for ” a “Goldilocks” a “.”)

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

;

(interp “Goldilocks”)(# $ Req(Female, k))

;

(interp “Goldilocks”)
(# $ “ said the porridge is too hot ” a “for ” a “Goldilocks” a “.”)

; “Goldilocks said the porridge is too hot for Goldilocks.”

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Several Pronouns, Several Marks

Goldilocks tasted the porridge and said that it is too hot for her.

Several Pronouns, Several Marks

Goldilocks tasted the porridge and said that it is too hot for her.

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that ” a (Pk. Req(Thing, k))a

“ is too hot for ” a (Pk. Req(Female, k)) a “.”)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that ” a (Pk. Req(Thing, k))a

“ is too hot for ” a (Pk. Req(Female, k)) a “.”)))

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ Req(Thing, k1))))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that ” a “the porridge”a

“ is too hot for ” a (Pk. Req(Female, k)) a “.”)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

(Pk. Req(Female, k)) a “.”)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

(Pk. Req(Female, k)) a “.”)))

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ Req(Female, k2))))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ”a

(let v = Pk. Req(Female, k) in

interp Thing “the porridge”(k2 $ v)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ”a

(let v = Pk. Req(Female, k) in

interp Thing “the porridge”(k2 $ v)))

;

(interp Female“Goldilocks”)
(# $ Req(Female, k3))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ”a

(let v = “Goldilocks” in

interp Thing “the porridge”(k2 $ v)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

“Goldilocks” a “.”)))
;

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

“Goldilocks” a “.”)))
;

Goldilocks tasted the porridge and said that the porridge is too

hot for Goldilocks.

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Far-reaching pronouns

need to look past the immediate occurrence

“he gave this to him”

Far-reaching pronouns

need to look past the immediate occurrence

“Now just one thing more remained, the box that held the

daylight, and he cried for that. His eyes turned around and

showed different colors, and the people began thinking that he

must be something other than an ordinary baby. But it always

happens that a grandfather loves his grandchild just as he does

his own daughter, so the grandfather felt very sad when he gave

this to him. When the child had this in his hands, he uttered the

raven cry, ”Ga,” and flew out with it through the smoke hole.”

“Raven”, Tlingit Indians of Southeastern Alaska

Far-reaching pronouns

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

| ReqDefer(fn,k) ->

let v = fn str in interp mytag str (k $ v)

Leaving bread-crumbs on the stack, walking the stack and

examining them

Far-reaching pronouns

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

| ReqDefer(fn,k) ->

let v = fn str in interp mytag str (k $ v)

Leaving bread-crumbs on the stack, walking the stack and

examining them

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Examining the stack

Far-reaching pronouns

The Req clause represents the case when I received your request and I

forward it to the supervisor, if I so chose. The ReqDefer clause

represents the case when you received my answer, presumably are
dissatisfied with it, and you choose to see my supervisor.

For ReqDefer approach, see our ICFP06 paper. The forwarding Req

trick is the intuition behind one of the proofs that shift/reset can

emulate control/prompt.

Anaphora and dynamic binding

Aspects of dynamism:

1. Examining any number of previous bindings

2. Referring to a binding occurrence that is not in scope (e.g.,

referring to a noun in a clause)

Solution: “binding that moves itself up”, see next

Outline

Delimited continuations

Examining the stack

I Generating (sentences, meanings) by jumping

back-and-forth

CPS and types

Summary

Generating denotations of questions

3lO · (\ ·G9)
; this · (is(λe. e · a-book))

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

3lO · (\ ·G9)
; this · (is(λe. e · a-book))

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q

this : e

a-book : et

is : (et)(et)

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Generating (sentences, meanings) by jumping back-and-forth

Generating denotations of questions

We see a familiar phrase, only with some weird dots and parentheses.

But this phrase is a program expression, and it can evaluated as a

program, given the appropriate definitions for G9, etc. The

evaluation gives a denotation – currently a string, but we have more

sophisticated denotational domains. In the current example, it is clear

the denotation is well typed, see the types of ‘this’, etc. later. It is not

obvious that this is always the case. We can nevertheless statically

assure that only well-typed denotations are produced, see our final

tagless paper.

Generating denotations of questions

(3lO · (? ·G9)) ·+

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

(3lO · (? ·G9)) ·+
; (λx. this · (is(λe. e · x)))

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

(3lO · (? ·G9)) ·+
; (λx. this · (is(λe. e · x)))

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

this : e

a-book : et

is : (et)(et)

2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Generating (sentences, meanings) by jumping back-and-forth

Generating denotations of questions

Before we used shift to insert something inside. Now, we insert

something outside, which corresponds to the natural style of writing.

If we write an essay and realized that we need to use a term we

should have defined earlier, we bookmark the current position in the

Emacs buffer, go to the earlier part of the essay, insert the definition,

come back to the remembered location and continue writing. The

same applies when we write a Haskell program and realized we need

to use a function defined in a module that we haven’t imported. We

have to jump the beginning of our code, insert the import statement,

and come back to the current expression.

Generating denotations of questions

(3lO · (\ ·@)) ·H@$^7?
; (this · (is(λe. e · a-book))) · so-he-said

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+
; (λx.(this · (is(λe. e · x))) · so-he-said)

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+
; (λx.(this · (is(λe. e · x))) · so-he-said)
(((3lO · (? ·G9)) ·+) ·H@$^7?)

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+
; (λx.(this · (is(λe. e · x))) · so-he-said)
(((3lO · (? ·G9)) ·+) ·H@$^7?)
; (λx.(this · (is(λe. e · x)))) · so-he-said

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) · +
; (λx.(this · (is(λe. e · x))) · so-he-said)
(((3lO · (? ·G9)) · +) ·H@$^7?)
; (λx.(this · (is(λe. e · x)))) · so-he-said

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

Generating (sentences, meanings) by jumping back-and-forth

Generating denotations of questions

Point out how the placement of the control delimiter, +, affects the

scope of the binding introduced by lambda. Thus we obtain either a

question that includes a quotation, or a quotation that includes a

question.

Outline

Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

I CPS and types

Summary

Outline

Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

I CPS and types

Summary2
0

0
7

-1
2

-0
6

Delimited Continuations in CS and Linguistics

CPS and types

Outline

The following was skipped during the presentation. It was 1.5-hr long

already. I have prepared a non-traditional presentation of CPS, using

operations on contexts rather than on terms. I should write it up for

my web site later.

Introduction to CPS

42 < (2 × breakpt)

The type of 42:

I int

I (int → bool) → bool

I (int → α) → α : context independence

I (int → F) → F

CPS and Double Negation

Glivenko’s Theorem [1929]: An arbitrary propositional formula

A is classically provable, if and only if ¬¬A is intuitionistically

provable.

Answer types in the CPS transformation

1 < 2

(bool→T)→T
︷ ︸︸ ︷

λk.

(int→T)→T
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

Answer types in the CPS transformation

1 < 2

(bool→T)→T
︷ ︸︸ ︷

λk.

(int→T)→T
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

Answer types in the CPS transformation

1 < 2

(bool→T)→T
︷ ︸︸ ︷

λk.

(int→T)→T
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

Answer types in the CPS transformation

1 < 2

(Pk. “Ouch!”) < 2

(bool→T)→string
︷ ︸︸ ︷

λk.

(int→T)→string
︷ ︸︸ ︷

(λk. “Ouch!”) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

string

Answer types in the CPS transformation

1 < 2

(Pk. “Ouch!”) < 2

1 < (Pk. ‘c’)

(bool→T)→char
︷ ︸︸ ︷

λk.

(int→char)→char
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→char
︷ ︸︸ ︷

(λk. ‘c’) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

char

)

︸ ︷︷ ︸

char

Answer types in the CPS transformation

1 < 2

(Pk. “Ouch!”) < 2

1 < (Pk. ‘c’)

(Pk. “Ouch!”) < (Pk. ‘c’)

(bool→T)→string
︷ ︸︸ ︷

λk.

(int→char)→string
︷ ︸︸ ︷

(λk. “Ouch!”) (λx.

(int→T)→char
︷ ︸︸ ︷

(λk. ‘c’) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

char

)

︸ ︷︷ ︸

string

Evaluation order chains together initial and final answer types.

Outline

Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

CPS and types

I Summary

Summary

Contexts and (delimited) control

Applications in Computer Science (backtracking, OS, Web,. . .)

Hints of linguistic applications

Dynamic Binding and Anaphora

Generating by jumping back-and-forth

Generating code, sentences, denotations in out-of-lexical-order

Type systems, CPS

CPS, double negation translation, type systems for ((delimited)

control) effects formalize as a substructural logic

Types are abstract expressions (Cousot)

The colon is a turnstile (Lambek)

Code online
http://okmij.org/ftp/Computation/Continuations.html

