
Applicative Abstract Categorial

Grammars

in Full Swing

Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract. Recently introduced Applicative Abstract Categorial Gram-
mars (AACG) extend the Abstract Categorial Grammar (ACG) formal-
ism to make it more suitable for semantic analyses while preserving all
of its benefits for syntactic analyses. The surface form of a sentence, the
abstract (tecto-) form, as well as the meaning are all uniformly repre-
sented in AACG as typed terms, or trees. The meaning of a sentence
is obtained by applying to the abstract form a composition of elemen-
tary, deterministic but generally partial transformations. These term tree
transformations are specified precisely and can be carried out mechani-
cally. The rigor of AACG facilitates its straightforward implementation,
in Coq, Haskell, Grammatical Framework, etc.

We put AACG through its paces, illustrating its expressive power and
positive as well as negative predictions on the wide range of analyses:
gender-marked pronouns, quantifier ambiguity, scoping islands and bind-
ing, crossover, topicalization, and inverse linking. Most of these analyses
have not been attempted for ACG.

AACG offers a different perspective on linguistic side-effects, demon-
strating compositionality not just of meanings but of transformations.

1 Introduction

One of the goals of the semantic analysis is comprehension: deter-
mining the meaning of an utterance. The subject of the analysis is
usually not the raw utterance but rather more or less abstract form
thereof, abstracting away peculiarities of pronunciation and writing
and often declination, conjugation, etc. One may as well call this
‘logical form’; we will stay however with ‘abstract form’. Finding the
right level of abstraction is one of the challenges.

One may discern two broad perspectives of the analysis. One is
proof search: building a logical system derivation whose conclusion



is directly related to the abstract form of an utterance. The success-
fully obtained derivation is taken as the evidence that the utterance
is grammatical. The meaning is then read off the derivation. The
proof search perspective is manifest in type-logical grammars; it also
underlies general categorial grammars and Minimalist Grammars.
Parsing as deduction is truly compelling and logically insightful. Yet
it is often hard to characterize the space of possible derivations, to
see that everything derivable will be judged by the native speakers as
grammatical, and everything that judged as grammatical can be de-
rived. In particular, it is difficult to get negative predictions: to prove
that there really cannot be a derivation for a particular sentence, no
matter how hard we try to build one.

Another perspective is most clearly described by Chung-chieh
Shan in his papers on linguistic side effects [6]. (Discourse repre-
sentation theory (DRT) is also in the same vein.) It is based not
on proof but on computation: the source sentence is taken to be a
program that computes the meaning as a logical formula. As any
program, it may fail: raise an ‘exception’ or stop before computing
any result. Thus in the computational perspective, the meaning is
obtained as the result of a mostly deterministic, inherently partial,
usually precisely specified and often mechanized process. The algo-
rithmic nature of this process lets it lay a credible claim to ‘real life’,
physiological relevance. On the downside, the computational process
is rigid. It is also too easy to get bogged down to details (control op-
erators, implementation of monads, etc.) Taken the computational
perspective as the starting point, the present work aims to raise its
level of abstraction, eliding implementation details and adding the
‘right’ amount of flexibility.

Applicative Abstract Categorial Grammars (AACG) recently in-
troduced in [4] is a reformulation of Abstract Categorial Grammars
(ACG) [1]. AACG supports syntactic analyses within the well-under-
stood second-order ACG. In addition and in contrast to ACG, it lets
us do semantic analyses without compromising syntactic ones. The
meaning of a sentence is obtained from its abstract (parsed) form
through a precisely specified process – so precise that it can be car-
ried out mechanically, by a computer. The process is a composition
of simple tree transformations. It may fail to deliver the meaning
formula, thus predicting the unacceptability of the sentence.

2



AACG is formally introduced and compared to ACG in [4]. That
paper however used rather simple illustrations. We now apply AACG
to more interesting analyses, of phenomena exhibited in the following
examples.

(1) Every girli’s father loves heri mother.
(1a) *Every girli’s father loves itsi mother.
(1b) *Heri father loves every girli’s mother.
(1c) A girli met every boy who liked heri.
(2a) That Johni left upset hisi teacher.
(2b) *That every boyi left upset hisi teacher.
(3a) Alice’s present for himi, every boyi saw.
(3b) *Every boyi, hisi mother likes.
(4a) At least two senators on every committee voted against the bill.
(4b) Two politicians spy on someone from every city.
(4c) Some man from every city secretly despises it.

We thus analyze, in §3, binding (1) with gender-marked pronouns
(1a) and crossover (1b), scoping islands and binding (2), and cat-
aphora and anaphora in topicalization (3). §4 deals with inverse link-
ing (4). The examples have many subtleties: (1c) has in reality no
reading with “every boy” outscoping “a girl”. Likewise, in (4b), “two
politicians” may scope either wider than “someone from every city”
or narrower. There is however no reading in which “two politicians”
scope between “someone” and “every city”. The inadmissibility and
the absence of the readings are reproduced in our analyses. These
phenomena have not been dealt with, or even considered, within the
original ACG. We drew most of the examples from the pioneering
paper on linguistic side-effects [6], to contrast with its approach to
direct compositionality. The inverse linking examples come from [5].

2 AACG Background and Quantifier Ambiguity

For reference we very briefly recall AACG, on the example of quan-
tifier ambiguity; see [4] for all details.

In AACG, the surface form of a sentence, its various abstract
(parsed) forms and the logical formula expressing the meaning – all
are uniformly represented as typed terms (trees), in a T-language,
Figure 1.

3



Base types υ
T-Types σ ::= υ | σ � σ

T-Constants c
T-Terms d ::= c | d � d

c: σ

d1: σ1 � σ2 d2: σ1

Tapp
d1 � d2: σ2

Fig. 1. T-languages

T-types σ are formed from base types υ and the binary connective
- � -. T-terms d are formed from constants c and the left-associative
binary connective - � -. Each constant is assigned a T-type; the T-
type of a composite term, if any, is determined by the inference rule
(Tapp). A T-language is the set of all well-typed terms – or, a set
of finite trees. On the latter view, the constants with their assigned
types constitute a tree grammar. Different T-languages differ in their
set of base types and their constants.

The following table shows three T-languages with the sample
of constants, to be used throughout. TS is the surface language
of strings, with many string constants and one binary operation
(written in infix) for string concatenation. TA is for abstract forms:
Curry’s tecto-grammar. Its types are familiar categories. The silent
constant cl combines an NP and a V P into a clause. These T-
languages are first-order.

υ c

TA S,NP,N, V P

John: NP
man: N
like: NP � V P
cl : NP � V P � S

TS string
·: string � string � string
"John", "every", . . . : string

TL e, t

conj, disj, . . . : t� t� t
john: e
man: e� t
∀,∃: (e� t) � t
x, y, z, . . . : e
x̂, ŷ, ẑ, . . . : t� (e� t)

4



The language TL is to express meaning, as a logic formula. In
addition to the standard logical constants it has an infinite supply of
distinct constants x, y, z, . . . of the type e and the corresponding set
of constants x̂, etc., intended as binders. For example, the meaning
of the sentence “a man left” is written in TL as

∃ � (x̂ � (conj � (man � x) � (left � x)))
We will often informally use the conventional logic notation however:
∃x.man x ∧ left x. Although TL is sort of higher-order, it has no
notion of reduction or substitution; its terms are just trees, but with
bindings.

Determining the meaning of a sentence is transforming its ab-
stract form TA to the logical formula TL. The transformation is eas-
ier to grasp if done in small steps. We will be using a variety of
TA languages to express the intermediate abstract forms. Each lan-
guage adds to the core TA described above new constants, whose set
is summarized in the following table:

every : N � NP
a : N � NP

varx , vary , . . . : NP
Ux ,Uy , . . . : N � S � S
Ex ,Ey , . . . : N � S � S
he, she, it : NP

We will refer to the set varx , vary , . . . as just var , and similarly for
U and E . These sets of constants are analogous to x, y, . . . , x̂, ŷ, . . .
of the TL language and represent (to be) bound variables and their
binders. They are distinct from lambda-bound variables and are not
subject to substitution, α-conversion or capture-avoidance. They are
the variables and binders that Kobele [5] wished for and had to
emulate in a complicated way.

2.1 Quantification and Quantifier Ambiguity

As an example, the sentence “every boy likes a girl” has the abstract
form

exbg
def
= cl � (every � boy) � (like � (a � girl))

written in the language TA ∪ {a, every}. One can easily imagine a
transformation Lsyn converting exbg to the TS term

5



"every" · "boy" · "like" · "a" · "girl"
taken to be the surface form of the sentence. The transformation is a
set of simple re-writing rules for converting TA terms to TS, as speci-
fied in Table 1. Alternatively, we can implement it as the mapping of

Lsyn[boy ] 7→ "boy"

Lsyn[girl ] 7→ "girl"

Lsyn[a � d] 7→ "a" · Lsyn[d]
Lsyn[every � d] 7→ "every" · Lsyn[d]
Lsyn[like � d] 7→ "like" · Lsyn[d]
Lsyn[cl � d1 � d2] 7→ Lsyn[d1] · Lsyn[d2]

Table 1. Lsyn as a term re-writing system

TA terms to the terms of linear simply-typed lambda-calculus with
TS terms as constants: Table 2. Applying such Lsyn to the original

Lsyn[boy ] 7→ "boy"

Lsyn[girl ] 7→ "girl"

Lsyn[a] 7→ λd. "a" · d
Lsyn[every ] 7→ λd. "every" · d
Lsyn[like] 7→ λd. "like" · d
Lsyn[cl ] 7→ λd1d2. d1 · d2

Table 2. Lsyn as a mapping to lambda-calculus

exbg gives a lambda-expression, which, upon normalization, becomes
the desired Ts term. The lambda-calculus view of Lsyn goes back to
the original ACG [1]. It is a good way of mechanically implementing
the transformation, and used in our semantic calculator. After all,
lambda-calculus is a term-rewriting system. Nevertheless, this view
is “too concrete”, showing implementation details like the normal-
ization step. The term re-writing–system view, shown in Table 1,
offers the right amount of abstraction. Therefore, it will be often
used throughout the paper.

There is yet another way to look at Lsyn: Table 3 is derived from
Table 1 by replacing each Lsyn[d] expression with the type of the TA
term d. The result looks like a context-free grammar. Therefore, the
abstract term exbg can be viewed as a parsed tree of the grammar,

6



N 7→ "boy"

N 7→ "girl"

NP 7→ "a" ·N
NP 7→ "every" ·N
V P 7→ "like" ·NP
S 7→ NP · V P

Table 3. Lsyn as a context-free grammar

and Lsyn as computing its yield. There is clearly an inverse trans-
formation L−1

syn – parsing from the surface form TS to the parse tree
TA. The grammar in Table 3 is rather simple, thanks to the simple,
unlifted types of the quantifying determiners like every .

The meaning of exbg is derived by applying a sequence of other
transformations to it. The first transformation LU turns exbg to a
term in a language TA ∪ {a, var ,U }, with new constants in place of
every .

LU [cl � C[every � dr] � d] 7→ (Ux � dr) � (cl � C[varx ] � d)
LU [cl � d � C[every � dr]] 7→ (Ux � dr) � (cl � d � C[varx ])

where C[] is a context (a term with a hole) such that the hole is not
a subterm of a cl term. §4 will show a few more rules for LU . If none
of them apply, LU is the identity. The result of LU [exbg]

(Ux � boy) � (cl � varx � (like � (a � girl)))
is in effect the Quantifier Raising (QR) of “every boy”, but in a
rigorous, deterministic way. The intent of the new constants should
become clear: U is to represent the raised quantifier, and var its
trace. Unlike QR, the raised quantifier (Ux �boy) lands not just on
any suitable place. LU puts it at the closest boundary marked by the
clause-forming constant cl . It should also be mentioned that LU , as
Lsym, is type-preserving: it maps a well-typed term to also a well-
typed term. The type preservation is the necessary condition for the
correctness of the transformations. Again unlike QR, we specify the
correctness conditions precisely.

The analogous LE transformation raises “a girl”, turning the
above TA∪{a, var ,U } term into a term in the language TA∪{var ,U ,E},
without the constant a and with new constants E :

(Ux � boy) � ((Ey � girl) � (cl � varx � (like � vary)))

7



There are no longer any of the original quantifiers. The raised exis-
tential is placed at the boundary marked by cl .

Lsem[boy ] 7→ boy
Lsem[girl ] 7→ girl
Lsem[varx ] 7→ x
Lsem[(Ux � dr) � d] 7→ ∀x.Lsem[dr]⇒ Lsem[d]
Lsem[(Ex � dr) � d] 7→ ∃x.Lsem[dr] ∧ Lsem[d]
Lsem[like � d] 7→ like Lsem[d]
Lsem[cl � d1 � d2] 7→ Lsem[d2] Lsem[d1]
Table 4. Lsem as a term re-writing system

The final, straightforward transformation Lsem, Table 4, turns
the above term into the TL logical formula ∀x. boy x ⇒ ∃y. girl y ∧
like y x representing the meaning of the original sentence. If LE is
applied first and LU second, the resulting logical formula will have
the opposite order of quantifiers, denoting the inverse reading of the
sentence. The quantifier ambiguity hence comes from the order of
applying individual transformations.

When a sentence has several quantifying determiners, each of
them can be associated with its own transformation L that will elim-
inate, or raise them. Although there can be many ways to order such
transformations, not every order will give a distinct reading, as we
shall see soon.

The quantifier ambiguity was also treated in ACG [3], but differ-
ently, using quantifier lowering, which required guessing the (parsed)
abstract form with the raised quantifiers. On our analysis, the parsed
form has quantifiers in-situ, represented by the simple second-order
ACG. No guessing of abstract forms is required.

2.2 Scope Islands

In the case of a scope island, like in “That every boy left upset a
teacher”, the abstract form

cl � (that � (cl � (every � boy) � left)) � (upset � (a � teacher))
has two cl constants corresponding to the subordinate and matrix
clauses. The former is the closest to “every boy” and becomes the
landing place for the raised universal, which is hence confined to

8



the subordinate clause. As the result, changing the order of LU and
LE transformations does not change the resulting logic formula: the
original sentence does not have the quantifier ambiguity.

2.3 Lexicon: Term-Language Transformation

The transformations like LU , Lsyn, etc. (called ‘lexicon’) have been
specified as type-preserving and confluent term-rewriting systems.
As we have already mentioned for Lsyn, lexicon can also be pro-
grammed in linear lambda-calculus. After all, lambda-calculus is a
type-preserving and confluent term-rewriting system. To transform
a T1 term into a term in the language T2, we replace each con-
stant in the original T1 term by a λ-expression Λ(T2) and normalize
the result. Here, Λ(T2) means a typed lambda-calculus with sums,
products and the fixpoint whose constants are terms of T2. If the
normalization succeeds, we end up with the term T2, the result of
the transformation. Because of the fixpoint, there may be no normal
form: the term transformations are inherently partial.

The transformations Lsyn and Lsem are clearly simple homor-
phisms. LU and LE are intuitively understood as movements, to a
precisely-defined boundary. The exact details of the lambda-calculus
implementation, fully described in [4], are not needed to understand
the present paper or to use AACG. Often the term-rewriting system
view is the right level of abstraction.

3 Anaphora and the Modeling of Dynamic
Semantics

This section describes AACG analyses of binding and its interaction
with other phenomena, in particular, quantification and scoping is-
lands. We start with the trivial example “Mary loves her mother”,
whose abstract form is as follows:

cl �Mary � (love � (possess � she �mother))
It is written in the language TA ∪ {pronoun}; the constant possess
has the type NP � N � NP .

We now describe in detail the transformation Ldyn that will elim-
inate the pronoun, replacing it with its referent. The transformation

9



is performed in two phases. The preliminary phase adds annotations
to the abstract form, to be eliminated, along with the pronouns, by
the Ldyn proper. The annotation phase Lann is a lexicon transfor-
mation like before, into a TA language enriched with two additional
constants

update : Gender � NP � σ � σ
post : NP � NP

The annotation transformation is

Lann[Mary ] 7→ post � (update � Fem �Mary �Mary)
Lann[varx ] 7→ post � varx
Lann[(Ux � girl) � d] 7→ (Ux � (update � Fem � varx � girl)) � Lann [d ]

It is the identity otherwise. Applying Lann to or example gives

cl � (post � (update � Fem �Mary �Mary))�
(love � (possess � she �mother))

The transformation Ldyn will try to eliminate the pronoun such
as she, replacing it with with a post-ed term. (And the follow-up triv-
ial transformation will erase the no-longer needed post and update
annotations). It is easier to explain the context-sensitive re-writing
Ldyn using the notion of a “discourse context” – which is the global
state maintained by Ldyn as it traverses the term in-order: left-to-
right, depth-first. When Ldyn encounters post � d, it posts d into the
discourse context. The annotation update �Fem � d1 � d2 represents d2
while recording a constraint in the context: d1 has feminine gender.
The update annotation does not post the term; it merely records
the constraint. Ldyn[she] searches the context for a posted term as-
sociated with the feminine gender, and returns that term. In our
example, (post � (update �Fem �Mary �Mary)) records the constraint
that Mary has feminine gender, and then posts Mary into the con-
text, where she will find it. In the result, Ldyn gives

cl �Mary � (love � (possess �Mary �mother))
which no longer has any pronouns.

If we replace “she” with “he” in the original sentence, Ldyn[he]
will fail to find the suitable referent (assuming the initially empty dis-
course context). The failure means the Ldyn transformation was un-
successful and hence the sentence corresponding to the source term
is unacceptable. This negative prediction is not delivered in [6] or
ACG analyses since they not make gender distinctions.

10



Ldyn may be implemented using a global mutable state, state
monad, delimited continuations, and so on – or as a context-sensitive
term re-writing system. Either way, the implementation details should
not matter. What matters is that Ldyn[she] examines the parents
and the left siblings of she, looking for a posted term of the feminine
gender.

The transformation Ldyn easily composes with LU and LE, giving
an account of quantification and binding, as in

(1) Every girli’s father loves heri mother.
(1b) *Heri father loves every girli’s mother.
(2a) That Johni left upset hisi teacher.
(2b) *That every boyi left upset hisi teacher.

To wit, the abstract form of (1), written in the language TA ∪
{pronoun, every} is

cl � (possess � (every � girl) � father) � (love � (possess � she �mother))
The transformation Lsem that produces the logic formula does not
apply since that lexicon has no mapping for pronouns and every .
They have to be eliminated first, by applying LU followed by Ldyn.
First, LU with Lann produce

(Ux � (update � Fem � varx � girl))�
(cl � (possess � (post � varx ) � father)�

(love � (possess � she �mother)))
Therefore, Ldyn will first record the constraint that varx is feminine,
then post varx , and then find it when encountering she. The result
is

(Ux � girl) � (cl � (possess � varx � father) � (love � (possess � varx �mother)))
with the eliminated (resolved) pronoun. Lsem can now derive the
logical formula representing the meaning of the sentence.

From the left-to-right, depth-first traversal mode of Ldyn we pre-
dict that a referent for a pronoun in an acceptable sentence must be
located to the ‘left’ of the pronoun, i.e., earlier in the in-order tree
traversal. For example, we predict that (1b) is unacceptable. The
scoping island condition for the universal then explains the unac-
ceptability of (2b).

Our prediction may seem at odds with (3a) and (3b):

(3a) Alice’s present for himi, every boyi saw.
(3b) *Every boyi, hisi mother likes.

11



Looking at the abstract form of (3b), for example,

(frontNP � (every � boy)) � (cl � (possess � he �mother) � (like � ))
we see the constant frontNP that corresponds to the comma that sets
off the fronted NP. Lsem has no mapping for that constant and for the
trace , therefore, they have to be transformed away first. Our trans-
formation stack will hence begin with Llower that lowers the fronted
phrase into the position indicated by . The other transformations
run afterwards. By the time of Ldyn, the variable representing the
moved out every � boy will be to the right of he and so the pronoun
cannot refer to it.

We finish with the interesting example

(1c) A girli met every boy who likedi her.
Although it has an existential and a universal QNPs, it exhibits no
quantifier ambiguity. To understand why, consider its abstract form

cl � (a � girl) � (met � (every � (who � boy � (liked � she))))
where the constant who has the type N � V P � N . Applying LE

with Lann (and omitting update for clarity) gives

(Ex � girl) � (cl � (post � varx ) � (met � (every � (who � boy � (liked � she)))))
If the universal is raised first, the result

(Uy � (who � boy � (liked � she)))((Ex � girl) � (cl � (post � varx ) � (met � vary)))
clearly has the pronoun she to the right of its posted referent and
hence cannot be bound by it.

4 Inverse Linking

This section describes the analyses of inverse linking (4a-4c):

(4a) At least two senators on every committee voted against the bill.
(4b) Two politicians spy on someone from every city.
(4c) Some man from every city secretly despises it.

The examples, borrowed from [5] demonstrate three characteristic
features of this phenomenon. First, a QNP embedded into a prepo-
sitional phrase attached to a noun of another QNP takes scope over
that outer noun phrase: (4a) has a reading with “every committee”
taking scope over “the two senators”. The second feature of inverse
linking is that an external QNP like “two politicians” in (4b) cannot
scope between the inversely linked “every” and “someone”. Lastly,

12



the embedded QNP on the inverse linking reading may bind pro-
nouns in other parts of the sentence.

Previously, the restrictor of a QNP was rather simple, often
merely a common noun. Inverse linking is about QNPs whose re-
strictor itself contains a QNP, which requires generalization of our
LU and LE transformations. To see why, consider what happens if
we apply the existing LE to (4b):

(Ex � (from � person � (every � city)))�
(cl � (two � politician) � (spyOn � varx ))

We have to eliminate every since Lsym has no mapping for it. How-
ever, LU cannot apply to (every � city) since that subterm does not
appear within the cl context.

We have to generalize the quantifier movement transformations,
and take restrictors seriously. First, we re-define Ux and Ex constants
and introduce the explicit constant for restrictors:

Ux ,Uy , . . . : S � S � S
Ex ,Ey , . . . : S � S � S

restr : N � NP � S

The new LU is as follows:

(1) LU [cl � C[every � dr] � d] 7→
(Ux � (restr � dr � varx )) � (cl � C[varx ] � d)

(2) LU [cl � d � C[every � dr]] 7→
(Ux � (restr � dr � varx )) � (cl � d � C[varx ])

(3) LU [restr � C[every � dr] � varx ] 7→
(Uy � (restr � dr � vary)) � (restr � C [vary ] � varx )

(4) LU [Ux � (restr � C[every � dr] � varx ) � d ] 7→
(Uy � (restr � dr � vary)) � (Ux � (restr � C[vary ] � varx ) � d)

(5) LU [Ex � (restr � C[every � dr] � varx ) � d ] 7→
(Uy � (restr � dr � vary)) � (Ex � (restr � C[vary ] � varx ) � d)

The hole in the context C[] should not appear as a sub-term of cl ,
restr , or within a QNP.

We now show the analysis of (4b) with the generalized quantifier
movements. First we observe that we cannot move out every � city
from the original term since this subterm is part of larger QNP.
Recall that the hole in the context C[] must not appear within a
QNP. Suppose we first apply LE, producing

13



(Ex � (restr � (from � person � (every � city)) � varx ))�
(cl � (two � politician) � (spyOn � varx ))

There are now two choices of applying the LU transformation. The
first choice, using rule (3) of the new LU transformation, gives

(Ex �
((Uy � (restr � city � vary)) � (restr � (from � person � vary) � varx )))�

(cl � (two � politician) � (spyOn � varx ))
with “someone” scoping over “every city”. The other choice, using
rule (5) of LU , produces

((Uy � (restr � city � vary))�
(Ex � (restr � (from � person � vary) � varx )))�

(cl � (two � politician) � (spyOn � varx ))
with the wide-scoping “every city”. This is the case of inverse linking.
In either case, “two politicians” takes the narrowest scope. If “two
politicians” is moved out first, it takes the sentence-wide scope. In
no case this QNP can scope between “someone” and “every city”,
reproducing the empirical restriction.

5 Conclusions

We have demonstrated AACG as the framework for uniform anal-
yses of variety of phenomena related to quantification and binding,
including the rarely treated (outside dynamic semantics) the gender
marking of pronouns. The key idea is successive transformations of
an abstraction of the syntactic form until we obtain the logic for-
mula representing its meaning. We specifically used the examples
of [6] to contrast the AACG’s take on linguistic side-effects, effect
interactions and the notion of evaluation. Whereas in [6] all linguis-
tic side-effects (movements) occur during the single tree traversal
(evaluation), we decompose them into separate simple traversals.
AACG takes compositionality to a new level, not only of meanings
but transformations.

Linguistic side-effects use the single delimited control operator
shift for everything: to implement the discourse context and the
movements similar to LU . The versatility had the price of rigid-
ity. Quantification ambiguity could only be realized by changing the
global evaluation order, which affects all other predictions. Delimited

14



control is also a low-level implementation detail. In our approach, the
transformations are specified rather abstractly, as type-preserving
term rewriting. Although each individual lexicon transformation is
confluent, there is a choice in their ordering, giving enough flexibility
for individual movements – with rigidity to reproduce the scoping
restrictions of inverse linking.

The present paper talked entirely about semantic interpretation
of sentences, or parsing a sentence to a logical form, so to speak. We
have said nothing about the converse, finding a sentence whose mean-
ing matches the given logical form. That is, we have been solving the
problem of comprehension and have not at all investigated genera-
tion. Although using arbitrary applicative functors clearly makes the
generation problem intractable, there could be constraints imposed
on the applicatives that make the ‘inversion’ of their transformations
tractable, like the almost linear constraint of [2]. Viewing generation
as logic programming problem, as did [2], seems promising.

References

[1] de Groote, P.: Towards abstract categorial grammars. In: Pro-
ceedings of the 40th Annual Meeting of the Association for
Computational Linguistics. pp. 148–155. Morgan Kaufmann, San
Francisco, CA (Jul 2002), http://www.aclweb.org/anthology/
P01-1033

[2] Kanazawa, M.: Parsing and generation as Datalog query eval-
uation (2011), \url{http://research.nii.ac.jp/~kanazawa/
publications/pagadqe.pdf}

[3] Kanazawa, M., Pogodalla, S.: Advances in Abstract Cat-
egorial Grammars: Language theory and linguistic model-
ing. Lecture notes, ESSLLI 09. Part 2 (Jul 2009), http:

//www.loria.fr/equipes/calligramme/acg/publications/

esslli-09/2009-esslli-acg-week-2-part-2.pdf

[4] Kiselyov, O.: Applicative abstract categorial grammar. In:
Kanazawa, M., Moss, L.S., de Paiva, V. (eds.) NLCS’15. Third
Workshop on Natural Language and Computer Science, Easy-
Chair Proceedings in Computing, vol. 32, pp. 29–38. EasyChair
(2015)

[5] Kobele, G.M.: Inverse linking via function composition. Natural
Language Semantics 18(2), 183–196 (2010)

15



[6] Shan, C.c.: Linguistic side effects. In: Barker, C., Jacobson, P.
(eds.) Direct Compositionality. pp. 132–163. Oxford University
Press, New York (2007)

16


