
Canonical Constituents and Non-canonical
Coordination

Simple Categorial Grammar Account

Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract. A variation of the standard non-associative Lambek calculus
with the slightly non-standard yet very traditional semantic interpreta-
tion turns out to straightforwardly and uniformly express the instances
of non-canonical coordination while maintaining phrase structure con-
stituents. Non-canonical coordination looks just as canonical on our anal-
yses. Gapping, typically problematic in Categorial Grammar–based ap-
proaches, is analyzed like the ordinary object coordination. Furthermore,
the calculus uniformly treats quantification in any position, quantifica-
tion ambiguity and islands. It lets us give what seems to be the simplest
account for both narrow- and wide-scope quantification into coordinated
phrases and of narrow- and wide-scope modal auxiliaries in gapping.
The calculus lets us express standard covert movements and anaphoric-
like references (analogues of overt movements) in types – as well as de-
scribe how the context can block these movements.

1 Introduction

Non-canonical coordination and in particular gapping (2) challenge the
semantic theory [2, 3].

(1) John gave a book to Mary and a record to Sue.
(2) I gave Leslie a book and she a CD.
(3) John gave a present to Robin on Thursday and to Leslie on Friday.
(4) Mrs. J can’t live in Boston and Mr. J in LA.

Further challenges are accounting for both narrow- and wide-scope read-
ing of “a present” in (3) and for the two readings in (4), with the wide-
scope “can’t” and the wide-scope coordination.

Combinatory Categorial Grammar (CCG) answers the challenge of
non-constituent coordination [6], but at the price of giving up on phrase
structure constituents. The CCG analysis of gapping requires further con-
ceptually problematic (and eventually, not fully adequate) postulates.
Kubota and Levine [3] present a treasure trove of empirical material il-
lustrating the complexities of coordination (from which we drew our ex-
amples). They develop a variant of type-logical categorial grammar with



both directed and undirected implications and higher-order phonology.
Here we demonstrate that the challenges of coordination and gapping
can be met within the standard non-associative Lambek calculus NL,
one of the basic categorial grammars. Our calculus represents arbitrary
discontinuous constituents, including multiple discontinuities and the dis-
continuous displaced material. Hence our calculus seems both simpler and
more expressive than other type-logical grammar approaches [5].

The main idea is a slightly non-standard semantic interpretation of
NL derivations (the phonology remains standard). It opened the way
to represent what looks like typical overt and covert movements. Being
strictly within NL, we add no modes or structural rules to the calculus
per se. No lexical items are ever moved. The antecedent of a sequent,
describing the relevant phrase structure, can still be manipulated by the
standard rules, given constants of particular types. These constants have
the empty phonology but the clear semantic (computational) interpreta-
tion. One may say that the structural rules are all lexicalized and compu-
tational. Although our approach may be reminiscent of QR and dynamic
semantics, we stay squarely within logic: the semantic interpretation is
compositionally computed by combining closed formulas using the stan-
dard operations of higher-order logic. Unbound traces, free variables, any
movement or rearrangement of lexical items are simply not possible in
our approach.

After presenting the calculus in §2 we illustrate its various features in
§3.1 on very simple examples of coordination. That section describes two
techniques that underlie the analyses of more complex non-constituent
coordination and gapping in §3.3. The same techniques also account for
quantification: in §4 we analyze not only the simple QNP in subject and
object positions but also the quantification ambiguity and scoping is-
lands. Finally, §5 treats the seemingly anomalous wide scope of QNP
and modals in sentences with non-canonical coordination, which proved
most difficult to account for in the past. We answer the challenges posed
at the beginning of this section. All presented examples have been me-
chanically verified: see the accompanying code http://okmij.org/ftp/

gengo/HOCCG.hs for the verification record and more examples.

2 Non-associative Lambek Calculus and Theory

After reminding of the non-associative Lambek calculus NL, we derive
convenient rules and introduce types and constants to be used throughout
the paper. The semantic interpretation is in §3.2.



Figure 1 is our presentation of NL. Types A,B,C are built with the
binary connectives / and \; antecedent structures Γ,∆ are built with
(−,−) and the empty structure •. The antecedent structure is an ordered
tree and hence (A, •) is different from just A. Labeled sequents have the
form Γ ` t : A, to be read as the term t having the type A assuming Γ .
The figure presents the standard introduction and elimination rules for
the two binary connectives (slashes). To ease the notational burden, we
write t1t2 for both left and right applications

Γ ` t1 : B/A ∆ ` t2 : A
/E

(Γ,∆) ` t1t2 : B

Γ ` t1 : A ∆ ` t2 : A\B
\E

(Γ,∆) ` t1t2 : B

(Γ,A) ` t : B
/I

Γ ` ht : B/A

(A,Γ ) ` t : B
\I

Γ ` it : A\B

V ar
A ` x : A

Fig. 1. The non-associative Lambek calculus NL

As basic (atomic) types we choose NP and S plus a few others used for
quantification and to mark context boundaries. They will be introduced
as needed. We also use a parallel set of types, which we write as NP ,
NP\S, etc. They are not special in any way: one may regard A as an
abbreviation for A\⊥ where ⊥ is a dedicated atomic type.

The introduction rules \I and /I almost always1 appear in combina-
tion with the corresponding elimination rules. To emphasize the pattern
and to save space in derivations we introduce in Fig. 2 admissible cut-like
rules: HypL is \I immediately followed by \E; HypR is similar.

The calculus per se has no structural rules. Still, the existing rules may
manipulate the antecedent structure Γ using constants of appropriate
types. For example, consider the sequent (•, (•, A)) ` t : B. Applying \I
twice we derive A ` iit : •\(•\B). The derivation shows that we are not
really distinguishing types and structures: structures are types. We will
call types that are structures or include structures (that is, contain • and
commas) full structure types. Assuming the constant ooL with the type
• ` ooL : B/(•\(•\B)) gives us (•, A) ` ooL(i i t) : B. In effect, ooL
transformed (•, (•, A)) ` B into (•, A) ` t : B. Since this and other similar
structural transformations will appear very frequently, we will abbreviate
the derivations through the essentially admissible rule Hyp 2 in Figure 2.

1 A notable exception is quantification, see §4.
2 We call this rule essentially admissible because it cannot transform (•, •) ` A to
• ` A. Therefore, we will have many derivations and sequents that differ only in
(•, •) vs. •. Since they are morally the same, it saves a lot of tedium to treat them



Γ ` t1 : A (A,∆) ` t2 : B
HypL

(Γ,∆) ` t1 · t2 : B

(∆,A) ` t2 : B Γ ` t1 : A
HypR

(∆,Γ ) ` t1 · t2 : B

∆\A ` t1 : Γ\A C[∆] ` t2 : A
Hyp

C[Γ ] ` t1 ↑ t2 : A

Fig. 2. Convenient derived rules (In the rule Hyp, Γ must be a full structure type.)

The Hyp rule can replace a structure type ∆ within the arbitrary
context C[] of another structure. The replacement must be a full struc-
ture type. Although our calculus has no structural rules whatsoever, Hyp
lets us rearrange, replace, etc. parts of the antecedent structure, provided
there is a term t of the suitable type for that operation. One may say
that our structural rules are lexicalized and have a computational inter-
pretation. For now we introduce the following schematic constants.

(•, •)\A ` oo : •\A
(•, (•, Γ ))\A ` oL : (•, Γ )\A
((Γ, •), •)\A ` oR : (Γ, •)\A

(C, •)\S ` resetCtx : •\S
The types of these terms spell out the structural transformation. We will
later require all such terms, whose type is a full structure type, be pho-
netically silent. In resetCtx, C is any context marker (such as those that
mark the coordinated or subordinated clause). The corresponding struc-
tural rule drops the context marker when the context becomes degenerate.
§3.1 illustrates the calculus on many simple examples. Throughout the

paper, we write V P for NP\S, V T for V P/NP and PP for V P\V P .

3 Coordination

This section describes analyses of coordination in our calculus, from canon-
ical to non-canonical. We show two approaches. The first is less general
and does not always apply, but it is more familiar and simpler to explain.
It builds the intuition for the second, encompassing and general approach.
The approaches are best explained on very simple examples below. §3.3
applies them to non-canonical coordination and gapping; §5 to scoping
phenomena in coordination.

as identical, assuming that (•, •) can always be replaced by •. We will use this
assumption throughout.



3.1 Two Approaches to Coordination

We start with the truly trivial example “John tripped and fell.” VP co-
ordination is the simplest and the most natural analysis, assuming the
constant and : (V P\V P )/V P . Here is another analysis, with the coordi-
nation at type S rather than V P :

NP ` x : NP • ` tripped : V P
\E

(NP, •) ` (x tripped) : S

And ` and : (S\S)/S

NP ` y : NP • ` fell : V P
\E

(NP, •) ` (y fell) : S

((NP, •), (And, (NP, •))) ` (x tripped) and (y fell) : S

Here, And is an atomic type, used to mark the coordination in the
antecedent structure3. Clearly the derivation can be reconstructed from
its conclusion. To save space, we will only be writing conclusions. To
proceed further, we assume the “structural constant” (schematic)

(Γ, (And, Γ ))\A ` andC : Γ\A

It has the full structure type and is hence phonetically silent. (All terms
in the same font as and are silent.) The Hyp rule then gives

(NP, •) ` andC ↑ (x tripped) and (y fell) : S

We now can apply the HypL rule with • ` John : NP obtaining

(•, •) ` John · andC ↑ (x tripped) and (y fell) : S

Finally Hyp is used once again, with the oo constant to contract (•, •) to
just • producing the final conclusion:

• ` oo ↑ John · andC ↑ (x tripped) and (y fell) : S

The phonology is standard; hypotheses, and and other constants in the
same font are silent. The semantic interpretation is described in §3.2.

There is yet another analysis of the same example. Although patently
overkill in this case, it explains the most general technique to be used
for non-canonical coordination. The intuition comes from the apparent
similarity of our analysis of quantification in §4 to the quantifier raising
(QR). The key idea is to paraphrase “John tripped and fell” as “John
tripped; he fell” with the silent ‘pronoun’. The paraphrase is analyzed in
the manner reminiscent of dynamic logic. We assume the axiom schema

A ` ref : A/A

3 Incidentally, such a mark restricts the use of the structure constants such as andL
and especially andD below – in effect restricting gapping to coordination.



where A is intended to signify that ref provides the value of the type A.
We derive

((NP, •), •) ` (ref John) tripped : S

and, as before, (NP, •) ` x fell : S. Coordinating the two gives:

(((NP, •), •), (And, (NP, •))) ` (ref John) tripped and (x fell) : S

Matching the reference x : NP with its referent NP is done by the
following two structural constants.

(((A,B), Γ ), (And, (A,∆)))\S ` andL : ((B,Γ ), (And, (•, ∆)))\S
((Γ,A), (And, (∆, (A,B))))\S ` andR : ((Γ, •), (And, (∆,B)))\S

The constant andL matches up the referenceA and the referent (A,B),
provided both occur at the left edge, and the referent is in the left con-
junct; A is replaced with • and (A,B) with B. The motivation for this
choice comes from the HypL rule, which andL is meant generalize. Sup-
pose we have the derivations

• ` t1 : A Γ2 ` t2 : A\S Γ3 ` t3 : A\S

Hypothesizing A ` x : A and the similar y gives

((A,Γ2), (And, (A,Γ3))) ` (x t2) and (y t3) : S

If Γ2 and Γ3 happen to be the same Γ , we can apply Hyp with andC :

(A,Γ ) ` andC ↑ ((x t2) and (y t3)) : S

which, followed-up with the HypL rule, finally yields

(•, Γ ) ` t1 · andC ↑ ((x t2) and (y t3)) : S

The structural constant andL is designed to complete the above derivation
in a different way: from

(((¬A, •), Γ ), (And, (A,Γ ))) ` ((ref t1) t2) and (y t3) : S

obtaining first

((•, Γ ), (And, (•, Γ ))) ` andL ↑ ((ref t1) t2) and (y t3) : S

and finally

(•, Γ ) ` andC ↑ andL ↑ ((ref t1) t2) and (y t3) : S

The derivation no longer uses HypL, which is subsumed into andL. This
structural constant, unlike andC , can be applied repeatedly and in the
circumstances when Γ2 is not the same as Γ3.



Coming back to our example, its conclusion is now clear:

• ` andC ↑ andL ↑ (ref John) tripped and (x fell) : S

(we shall elide the final step of reducing (•, •) to • from now on). Again,
the read-out is standard, keeping in mind that all italicized items are
silent. The semantic interpretation is described in §3.2.

The subject coordination, as in “John and Mary left.” is similar. Be-
sides the straightforwardNP coordination (if we assume and : (NP\NP )/NP ),
we can coordinate at type S. Our first approach leads to

(•, V P ) ` andC ↑ (John x) and (Mary y) : S

followed by the application of the HypR rule with left : V P on the right.
The more general approach derives (•, V P ) ` (John x) : S with the V P
hole for the left conjunct and (•, (V P , •)) ` Mary (ref left) : S for the
right conjunct. The right-edge hole is matched up with the right-edge
referent by andR, which requires the referent to be in the right conjunct.
Again, the motivation is to generalize the HypR rule, which comes from
the /I rule of the Lambek calculus.

Object coordination “John saw Bill and Mary.” lets us introduce the
final structural constant of our approach, which matches a hole with a
referent in the medial position rather than at the edge. Our first approach
invariably leads to

(NP, (TV, •)) ` andC ↑ (x (y Bill)) and (u (v Mary))

which is the dead-end: since TV is not at the edge of the antecedent
structure, neither HypL nor HypR can eliminate it. The first approach,
although simple, clearly has limitations – which should be obvious consid-
ering it is just the standard Lambek calculus. The latter too has trouble
with eliminating hypotheses far from the edges.

The second approach produces

((•, ((TV , •), •)), (And, (•, (TV, •)))) `
andL ↑ (ref John) ((ref see) Bill) and (x (y Mary)) : S

Since the referent is now deep in the structure, neither andL nor andR
can get to it. We have to use the more general constant

((Γ1, ((TV , •), Γ2)), (And, (∆1, (TV,∆2))))\S `
andD : ((Γ1, (V B, Γ2)), (And, (∆1, (V B,∆2))))\S

(it is actually a family for different shapes of contexts). Although this
constant seems to give rise to an unrestricted structural rule, it is limited
by the type of the hole. Since the hole is for a term deep inside a formula,
that term must denote a relation, that is, have at least two arguments. The



hole is thus restricted to be of the type TV , V P/PP and similar. Kubota
and Levine discuss in detail a similar restriction for their seemingly freely
dischargeable hypotheses in [4, §3.2]. The context marker V B tells that
the verb has been gapped.

One may be concerned that plugging the hole is too loose a feature,
letting us pick any word in the left conjunct and refer to it from the right
conjunct, or vice versa. We could then derive “*John tripped and.” (with
the hole in the right conjunct referring to “tripped”). Such a derivation
is not possible however. We can get as far as

(((NP, •), (V P , •)), (And, (NP, V P ))) `
(ref John) (ref tripped) and (x y) : S

Although we can plug the NP hole at the left edge with andL, after that
we are stuck. Since the V P hole is at the right edge in the antecedent
structure of the conjunct, it can be eliminated only if we apply andR –
which however requires the referent to be in the right conjunct rather
than the left one. On the other hand, V P does not denote a relation and
andD does not apply either. (The latter also does not apply because it
targets holes in the middle of the structure rather than at the edge.)

The prominent feature of our second approach is a peculiar way of
eliminating a hypothesis: a hypothetical NP phrase introduced in the
derivation of one coordinated clause is eliminated by “matching it up”
with the suitable referent in the other coordinated clause. This hypo-
thetical phrase is strongly reminiscent of a trace, or discontinuity (as in
Morrill et al. [5]). It is also reminiscent of anaphora, especially of the sort
used in Montague’s PTQ. To be sure, this ‘anaphora’ differs notably from
overt pronouns or even null pronouns. When targeted by the HypR rule,
the hypothesis acts as a pure cataphora rather than anaphora. Mainly,
the rules of resolving our ‘pronoun’, such as andR, are quite rigid. They
are syntactic rather than pragmatic, based on matching up two deriva-
tions, one with the hole and the other with the referent. The derivations
should be sufficiently similar, ‘parallel’, for them to match. To avoid con-
fusion, we just call our hypothetical phrase a hole, a sort of generalized
discontinuity. Unlike Morrill, this hole may also occur at the edge.

3.2 Semantic (Computational) Interpretation

The phonological interpretation of a derivation – obtaining its yield –
is standard. We read out the fringe (the leaves) of the derivation tree in
order, ignoring silent items. This section expounds the conservative, tradi-
tional and yet novel semantic interpretation. It is this new interpretation



that lets us use NL for analyzing phenomena like gapping, quantifier
ambiguity and scope islands that were out of its reach before.

The semantic interpretation of a grammatical derivation maps it to
a logical formula that represents its meaning. The mapping is composi-
tional: the formula that represents the meaning of a derivation is built
from the formulas for sub-derivations. In our interpretation, the mean-
ing of every derivation, complete or incomplete, is represented by an al-
ways closed formula in the higher-order logic: the simply-typed lambda
calculus with equality and two basic types e and t. Although pairs are
easy to express in lambda calculus (using Church encoding), for nota-
tional convenience we will treat pairs, the pair type (A,B) and the unit
type () as primitives. Another purely notational convenience is pattern-
matching to access the components of a pair; for example, to project the
first component we write λ(x, y).x. (The accompanying code instead of
pattern-matching uses the projection functions, which are expressible in
lambda-calculus.) We write underscore for the unused argument of the
abstraction.

Our interpretation maps every NL sequent Γ ` A to a closed formula
of the type dΓ\Ae where the homomorphic map d−e from the NL types
to the semantic types is given in Figure 3. (The interpretation of a sequent
confirms that a structure is really treated as a type.)

A 7→ dAe

NP 7→ e
S 7→ t

A\B 7→ dAe → (dBe, t)
B/A 7→ dAe → (dBe, t)
• 7→ ()

(A,B) 7→ (dAe, dBe)
A 7→ dAe
And 7→ ()

the same for all other context markers

U 7→ e
E 7→ e

Fig. 3. Mapping NL types to semantic types

As expected, the NL type NP maps to the type of entities e, S maps
to the type of propositions t, and the contextual markers such as And,
V B, etc. have no semantic significance. The mapping of directional impli-
cations and sequents is, on one hand, is traditional. Intuitively, an impli-
cation or a sequent are treated as a computation which, when given the
term representing its assumptions will produce the term representing the



conclusion. Uncommonly, our interpretation of an implication (sequent)
produces two terms. The first represents the conclusion, and the second,
always of the type t, represents side-conditions. For example, the sequent
representing the complete sentence • ` S is mapped to the formula of
the type ()→ (t, t). It is the computation which, when applied to () (the
trivial assumption, the synonym for >) will produce two truth values.
Their conjunction represents the truth of the proposition expressed by
the original sentence. This splitting off of the side conditions (which are
composed separately by the inference rules) is the crucial feature of our
interpretation.

Each axiom (sequent) is mapped to a logical formula of the corre-
sponding semantic type. Each rule of the calculus combines the formu-
las of its premises to build the formula in the conclusion. For example,
the rule \I takes the sequent (A,Γ ) ` B (whose interpretation, to be
called f , has the type (dAe, dΓ e) → (dBe, t)) and derives the sequent
Γ ` A\B. Its interpretation is the formula λg.((λa.f(a, g)),>) of the
type dΓ e → (dAe → (dBe, t), t). More interesting are the eliminations
rules, for example, \E. Recall, given the formula (to be called x) inter-
preting the sequent Γ ` A and the formula f for the sequent ∆ ` A\B,
the rule builds the interpretation of (Γ,∆) ` B as follows.

λ(g, d). let (fv, fs) = f d in
let (xv, xs) = x g in
let (bv, bs) = fv xv in
(bv, bs ∧ fs ∧ xs)

(where let x = e1 in e2 is the abbreviation for (λx.e2)e1.) Informally,
whereas introduction rules correspond semantically to a λ-abstraction,
elimination rules correspond to applications. In our interpretation, the
elimination rules also combine the side-conditions.

As an illustration we show the semantic interpretation of two deriva-
tions from the previous section. The first is rather familiar

• ` oo ↑ John · andC ↑ (x tripped) and (y fell) : S

and its interpretation is unsurprising. The sequent • ` John : NP is
assigned the logical formula λ .(john,>) where john : e is the domain con-
stant. The semantic interpretation of the other axiom sequents is similar.
The constant

(Γ, (And, Γ ))\A ` andC : Γ\A

corresponds to the formula

λf.(λd.f (d, ((), d)),>) : ((dΓ e, ((), dΓ e))→ (dAe, t))→ (dΓ e → (dAe, t))



All side-conditions are >; the sequent for the sentence is interpreted as
λ .(tripped john ∧ fell john,>).

More interesting is the derivation with holes and referents:

• ` andC ↑ andL ↑ (ref John) tripped and (x fell) : S

The referent maker A ` ref : (A/A) is interpreted as λx.(λx.(x, x = x),>)
That is, ref John corresponds to a formula that receives an NP assump-
tion (the value of the type e) and produces john, what John by itself
would have produced, along with the side-condition that the received
assumption must be john. The structured constant andL matches up
the hole and the referent. Recall, it converts the structure of the type
((((A,B), Γ ), (And, (A,∆))) into (((B,Γ ), (And, (•, ∆))) which no longer
has the assumption A in it (nor the matching A). This assumption is
eliminated ‘classically’ by assuming it with the existential quantifier.

(λf. (λ(((), g), ((), ((), d))).
∃x.let (bv, bs) = f (((x, ()), g), ((), (x, d))) in bv ∧ bs,

>),>)

The quantified variable is passed as the A assumption and as the A as-
sumption. The latter will later be converted to the side condition that
the quantified variable must be equal to the referent. The final truth con-
dition is represented by the formula ∃x.(tripped john ∧ fell x) ∧ x = john:
the hole in the conjunct fell x is filled by the referent john.

We have just demonstrated a dynamic-semantic–like approach that
uses only the traditional means (rather than mutation, continuation and
other powerful features) to accomplish the filling of a hole with a refer-
ent deep in the tree. Our side-condition plays the role of the constraint
store, or of the current substitution in unification algorithms. We prefer to
view our semantics in structural rather than dynamic terms, as matching
up/unifying derivations (trees) rather than mutating the shared ‘discourse
context’. In general, mutations, continuations and other effects may be
just as artifact of the constructive, computational approach to building
logical formulas representing the meaning of a sentence. In a more high-
level, declarative approach advocated here, the meaning can be derived
non-constructively, “classically” and more clearly.

3.3 Non-canonical Coordination and Gapping

We now apply the two methods from the previous section to analyses of
non-canonical coordination. Our first example is “John liked and Mary
hated Bill.”

(andC ↑ John (liked x) and (Mary (hated y))) · Bill



The last significant rule in the derivation is HypR. The very similar deriva-
tion can be given with the hole-referent approach. Unlike CCG, we do not
treat ‘John liked’ as a constituent. In fact, the latter is not derivable in
our calculus.

We stress that “*John liked Bill and Mary hated φ” is not derivable:
since Bill occurs at the right edge of the conjunct, it can only be tar-
geted by andR. However, that rule requires the referent to be in the right
conjunct rather than the left conjunct.

Next is gapping, for example “Mary liked Chicago and Bill Detroit.”

andD ↑ Mary ((ref liked) Chicago) and (Bill (x Detroit))

The analysis is almost identical to the object coordination analysis in §3.1.
It may seem surprising that in our calculus such a complex phenomenon
as gapping is analyzed just like the simple object coordination.

As presented, the analysis can still overgenerate, for example, erro-
neously predicting coordination with a lower clause:

*John bought a book and Bill knows that Sue a CD.

The problem can be easily eliminated with the mechanism that used in
§4 for quantification islands. Kubota and Levine [4] however argue against
the island conditions in gapping. They advocate that we should accept
the above sentence at the level of derivation (combinatorial grammar)
and rule it out on pragmatical grounds. Although Kubota and Levine’s
argument applies as it is in our case, we should stress that our calculus
does offer a mechanism to express the requirement that the coordinated
clauses must be ‘parallel’ (see the type of andC for example). We could
specify, at the level of combinatorial grammar, exactly what it means.

4 Quantification

The techniques introduced to analyze non-canonical coordination turn
out to work for quantification in any position, quantification ambiguity
and scope islands.

We start with the deliberately simple example “John liked everyone”,
where ‘everyone’ is typed as U ` NP where U is an atomic type. From its
simple NP type, ‘everyone’ looks like an ordinary NP, letting us easily
derive

(•, (•,U)) ` John (liked everyone) : S

‘Everyone’ however has the assumption U , which has to be eventually dis-
charged. The only way to do it in our system is to find a structural rule



(structural constant) that moves U to the left edge of the antecedent struc-
ture, where it can be abstracted by the rule \I. We do in fact posit such
a structural constant, which, in combination with the Hyp rule, converts
(•, (•,U)) to (U , (•, •)). We call it floatU (actually, it is a combination
of constants, each responsible for smaller-step U ‘movements’). Once U
is floated to the left edge of the antecedent, the \I rule gives • ` U\S.
The final step applies /E with the silent constant • ` forall : (S/(U\S))
producing

• ` forall (i(floatU ↑ (John (liked everyone)))) : S

The analysis wrote itself: each step is predetermined by the types and the
available constants. It only works if U is allowed to float to the top of the
assumption structure, which has been the case.

The semantic interpretation maps U (and the similar E below) to e and
interprets ‘everyone’ as essentially the identity function. The semantics
of forall is λ .(λk.(∀x.let (bv, bs) = k x in bs ⇒ bv,>),>) The meaning of
the phrase is hence given by the formula (λk.∀x.kx) (λx. like x john).

Existential quantification uses the E hypothesis. Quantification in the
subject and even medial positions are just as straightforward. The key is
the ability to float U or E to the left edge of the antecedent.

Our approach treats the quantification ambiguity. Consider “Someone
likes everyone”. At an intermediate stage we obtain

(E , (•,U)) ` someone (like everyone) : S

Since E is already at the left edge, it can be abstracted by \I and dis-
charged by the application of exists. The hypothesis U still remains; it can
be floated and then discharged by forall . The resulting truth condition
reflects the inverse reading of the sentence. If U is floated first, the linear
reading results.

We stress that the analysis of quantification crucially relies on the
ability to float the hypotheses U or E to the left edge, permuting them
with the other components of the structure. We can easily block such
moves by introducing context markers, for example, Clause:

Clause ` TheFactThat : NP/S

We can then posit that U is not commutable with Clause, which ex-
plains why “That every boy left upset a teacher” is not ambiguous. The
hypothesis E may still be allowed to commute with Clause, hence letting
existentials take scope beyond the clause.

It is instructive to compare the present analyses of the quantification
ambiguity and islands with the continuation analyses of [1]. The latter



rely on the so called quantifier strength (the position of quantifiers in
the continuation hierarchy) to explain how one quantifier may outscope
another. Here we use essentially the structural rules (programmed as spe-
cial lexical items to be applied by the Hyp rule). In the continuation
analyses, the clause boundary acts as a ‘delimiter’ that collapses the hi-
erarchy and hence prevents the quantifiers within from taking a wider
scope. Essentially the same effect is achieved here by simply not permit-
ting reassociation and commutation with Clause.

For the sake of the explanation we have used the very simple QNP
“everyone” and “someone” with the unrealistically trivial restrictors. Our
approach handles arbitrary restrictors. It turns out the ‘side-conditions’
in the semantic representation are exactly the restrictors of the quantifi-
cation. For the lack of space we can only refer to the accompanying source
code for details.

5 Anomalous Scoping in Non-canonical Coordination

We now combine the analyses of quantification and coordination and
apply them to the wide scoping of quantifiers in gapped sentences, for
example: “I gave a present to Robin on Thursday and to Leslie on Friday.”

We start with the straightforward derivation

(•, E) ` gave (a present) : V P/PP

and extend it to

((NP, •), (((V P/PP , (•, E)), (•, •)), (•, •))) `
(ref John) (((ref (gave (a present))) (to Bill)) (on Monday))

The derivation for the second conjunct assumes the ‘holes’ xj : NP and
xg : V P/PP :

(NP, ((V P/PP, (•, •)), (•, •))) ` xj ((xg (to Leslie)) (on Friday))

The NP hole xj is at the left edge of the antecedent and is filled with
the referent “John”, using Hyp and the constant andL. The hole xg is
filled with the referent (gave (a present)), using Hyp and andD. The type
V P/PP corresponds to a relation (between NP and PP ) and hence can
be used with andD. Finally, E in the remaining antecedent structure is
floated to the left edge and eliminated with exists. The semantic inter-
pretation shows the wide scope of “a present”.

The derivation of the narrow-scope reading also starts with

(•, E) ` gave (a present) : V P/PP



but proceeds by first floating E to the left and abstracting with \I:

• ` igave (a present) : E\(V P/PP )

(for clarity, we omit the structural constant needed floating E). This term
is used as a referent. Assuming E ` xE : E leads to

(E , (E\(V P/PP ), •)) ` xE (ref (igave (a present))) : (V P/PP )

and, similarly to the above, to the derivation for the left conjunct:

((NP, •), (((E , (E\(V P/PP ), •)), (•, •)), (•, •))) `
(ref John) (((xE (ref (igave (a present)))) (to Bill)) (on Monday))

The marker E is then floated to the left edge, abstracted by \I and elim-
inated by applying the constant exists:

((NP, •), (((E\(V P/PP ), •), (•, •)), (•, •))) `
exists(i(ref John) (((xE (ref (igave (a present)))) (to Bill)) (on Monday)))

The derivation for the right conjunct is similar, only using the holes NP `
xj : NP and E\(V P/PP ) ` xg : E\(V P/PP ):

(NP, ((E\(V P/PP ), (•, •)), (•, •))) `
exists(ixj (((xE xg) (to Leslie)) (on Friday)))

The two conjuncts (clauses) can now be coordinated and the holes plugged
using andD and andL constants. Each clause has its own quantifier. Ex-
actly the same approach applies to narrow- and wide- scope modal aux-
iliaries such as “must” and “cannot”.

6 Discussion and Conclusions

The familiar non-associative Lambek calculus with the conservative, tra-
ditional and yet novel semantic interpretation turns out capable of an-
alyzing discontinuous constituency. Gapping, quantifier ambiguity and
scope islands now fall within NL’s scope. The semantic interpretation
is traditional in that it is compositional, assigning every (sub)derivation
an always closed logical formula and using only the standard operations
of the higher-order logic. The interpretation uses no dependent types,
monads, effects or the continuation-passing style. The crucial feature is
side-conditions to the semantic interpretation, to be combined with truth
conditions at the end.

Our calculus shares many capabilities with the hybrid type-logical
categorial grammar of Kubota and Levine K&L [2]. Both calculi ana-
lyze non-canonical coordination, gapping, and narrow and wide scopes of
quantifiers and modal auxiliaries in coordinated structures. Our calculus



uses no modes, type raising or higher-order phonology. Our coordination
is always at type S and maintains phrase structure constituents.

The immediate future work is the treatment of summatives (with
“total”) and symmetric phrases (with the “same”). Our interpretation
has the classical logic flavor, which is interesting to explore further. One
may argue if structural postulates should be added directly rather than
sneaked through structural constants. The resulting calculus should then
undergo the formal logical investigation, including the evaluation of the
complexity of decision procedures.

What gives NL its unexpected power is the somewhat non-standard
semantic interpretation. The interpretation is classical in the sense of
classical logic, involving existentials (Hilbert epsilons). If we are to insist
on a computational interpretation, we have to eliminate such existentials
and resort to logical variables (and hence mutation) or delimited contin-
uations and backtracking. Could it be that the continuation semantics,
dynamic semantics with mutation, monads and effects are just the arti-
facts of the computational, constructive approach to the syntax-semantics
interface? If the interface is formulated classically, declaratively, then even
the simplest NL will suffice?

Acknowledgments. I am very grateful to Yusuke Kubota for very help-
ful conversations and many suggestions.

References

[1] Kiselyov, O., Shan, C.c.: Continuation hierarchy and quantifier scope. In: Mc-
Cready, E., Yabushita, K., Yoshimoto, K. (eds.) Formal Approaches to Seman-
tics and Pragmatics, pp. 105–134. Studies in Linguistics and Philosophy, Springer
Netherlands (2014), http://dx.doi.org/10.1007/978-94-017-8813-7_6

[2] Kubota, Y., Levine, R.: Gapping as like-category coordination. In: Béchet, D.,
Dikovsky, A. (eds.) Logical Aspects of Computational Linguistics: 7th International
Conference. pp. 135–150. Springer (2012)

[3] Kubota, Y., Levine, R.: Empirical foundations for hybrid type-logical categorial
grammar. the domain of phenomena (Aug 2013)

[4] Kubota, Y., Levine, R.: Gapping as hypothetical reasoning (2014), to appear
in Natural Language and Linguistic Theory, available at http://ling.auf.net/

lingbuzz/002123

[5] Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,
Language, and Information 20(1), 1–48 (2011), http://dx.doi.org/10.1007/

s10849-010-9129-2

[6] Steedman, M.J.: Gapping as constituent coordination. Linguistics and Philosophy
13, 207–263 (1990)


