
Delimited Control in OCaml,
Abstractly and Concretely

System Description

http://okmij.org/ftp/Computation/Continuations.html

FLOPS 2010
Sendai, Japan April 21, 2010

2

Outline

I Applications

Introduction to delimited continuations

Implementation

The subject of the talk the library of multi-prompt delimited control in
OCaml. The library is called delimcc.

3

Delimited dynamic binding

Oleg Kiselyov (FNMOC)
Chung-chieh Shan (Rutgers University)

Amr Sabry (Indiana University)

ICFP 2006

The first application of the library of multi-prompt delimited
continuations in OCaml was implementing delimited dynamic
binding, presented at ICFP 2006. This is the title slide from that talk,
given by Chung-chieh Shan.

4

Demo of persistent delimited continuations in
OCaml for nested web transactions

http://okmij.org/ftp/packages/caml-shift.tar.gz
http://okmij.org/ftp/ML/caml-web.tar.gz

Continuation Fest 2008
Tokyo, Japan April 13, 2008

http://okmij.org/ftp/packages/caml-shift.tar.gz
http://okmij.org/ftp/ML/caml-web.tar.gz

A practical application of the delimcc library was to automagically
turn console applications into CGI applications. You merely link the
application with a different IO library. This process was demonstrated
at the Continuation Fest in Toukyou two years and a week ago. Again,
this was the title slide from that talk.

Shifting the stage
Staging with delimited control

Yukiyoshi Kameyama and Oleg Kiselyov and Chung-chieh Shan

PEPM, 20 January 2009

The library turned out useful for writing efficient and comprehensible
direct-style code generators.

6

Monolingual probabilistic programming using
generalized coroutines

Oleg Kiselyov and Chung-chieh Shan

Uncertainty in Artificial Intelligence (UAI)
McGill University, 19 June 2009

Another, quite extensive application was a very shallow embedding of
a probabilistic domain-specific language. This is the first slide from
that talk, first presented less than a year ago by Chung-chieh Shan, at
a quite well-known AI conference.

7

Lifted inference: normalizing
loops by evaluation

Oleg Kiselyov (FNMOC)
Chung-chieh Shan (Rutgers)

Workshop on Normalization by Evaluation
15 August 2009

We have found another application, normalization of MapReduce-loop
bodies by evaluation. Chung-chieh Shan presented that talk at the
LICS-affiliated workshop on normalization by evaluation. The
ostensible motivation was computing probabilities of getting swine flu.

8

Functional un|unparsing

Kenichi Asai (Ochanomizu)
Oleg Kiselyov (FNMOC)

Chung-chieh Shan (Rutgers)

MitchFest, Northeastern University, Boston
23 August 2009

The type-safe printf and scanf are already available in OCaml, via
ad-hoc typing rules in the OCaml type checker. We derived versions
that don’t require such ad hoc extensions to the type system.
Hindley-Milner system suffices.

9

Dynamic Logic in ACG:
discourse anaphora and scoping islands

Logical Methods for Discourse
Nancy, December 15, 2009

Delimited continuations are useful in linguistics; one may argue that
multi-prompt delimited control of the sort implemented in the delimcc
library is even more useful. This talk made this argument, using
OCaml code to demonstrate sample analyses of English sentences.

I hoped to convince you that the library of delimited control in OCaml
is quite useful, at least for writing papers. None of the above papers
said anything about the library itself or its implementation. If you are
curious how it is implemented, you had to read the comments in the
code. There are a lot of them. Reading the comments is still a good
idea: the part about persistence of the delimited continuation is not
described in the FLOPS paper at all, due to space limit.

10

Outline

Applications

I Introduction to delimited continuations

Implementation

This FLOPS paper is about implementing the library. Before we get to
the implementation, we should remind ourselves what delimited
continuations are. I emphasize the word ‘remind’ since it is my
contention that everyone already knows delimited continuations.

11

Puzzle

”U2” has a concert that starts in 17 minutes and they must all
cross a bridge to get there. They stand on the same side of the
bridge. It is night. There is one flashlight. A maximum of two
people can cross at one time, and they must have the flashlight
with them. The flashlight must be walked back and forth. A pair
walk together at the rate of the slower man’s pace:
Bono 1 minute to cross
Edge 2 minutes to cross
Adam 5 minutes to cross
Larry 10 minutes to cross

For example: if Bono and Larry walk across first, 10 minutes have
elapsed when they get to the other side of the bridge. If Larry then
returns with the flashlight, a total of 20 minutes have passed and you
have failed the mission.

Allegedly, this is a question for potential Microsoft employees.
An answer is expected within 5 minutes.

There are two answers, neither of which are trick answers. Allegedly,
this is one of the questions for potential Microsoft employees. Some
people really get caught up trying to solve this problem. Reportedly,
one guy solved it by writing a C program, although that took him 37
minutes to develop (compiled and ran on the 1st try though). Another
guy solved it in three minutes. A group of 50, at Motorola, couldn’t
figure it out at all.

12

Simple library for non-determinism

module type SimpleNonDet = sig
val choose : ’a list -> ’a
val run : (unit -> unit) -> unit

end

let fail () = choose []

A clear and elegant way of solving the puzzles like ours is to use
non-determinism. We assume non-deterministic functions with the
simple interface above. We assume that a non-deterministic
computation will print out its result when it finishes. Therefore, its
return type, and the return type of run are both unit. The convenient
function fail fails the computation.

13

Solving the puzzle

type u2 = Bono | Edge | Adam | Larry
type side = u2 list

let rec loop trace forward time_left = function
| ([], _) when forward ->

print_trace (List.rev trace)
| (_, []) when not forward -> ...
| (side_from, side_to) ->

let party = select_party side_from in
let elapsed = elapsed_time party in
let _ = if elapsed > time_left then fail () in
let side_from’ = without party side_from in
let side_to’ = side_to @ party in
loop ((party,forward)::trace) (not forward)

(time_left - elapsed) (side_to’,side_from’)

This code represents the specification of the problem, in the most
straightforward way. I’m sure everyone in the audience can write this
code in their sleep. Perhaps only one function would give a pause.

14

Selecting a party

let select_party side =
let p1 = choose side in
let p2 = choose side in
match compare p1 p2 with
| 0 -> [p1]
| n when n < 0 -> [p1;p2]
| _ -> fail ()

Running the code to solve the puzzle

run (fun () ->
loop [] true 17 ([Bono;Edge;Adam;Larry],[]))

But even the selection function is most straightforward, if we could
non-deterministically select an element from the list. And our simple
library provides exactly that function. The library also gives us a run
function, to execute the computation.

15

Implementing non-determinism

let rec choose = function
| [] -> exit 666
| [x] -> x
| (h::t) ->

let pid = fork () in
if pid = 0 then h
else wait (); choose t

let run m = match fork () with
| 0 -> m (); printf "Solution found"; exit 0
| -> try while true do waitpid [] 0 done

with ...

One way to implement non-determinism is just to run all the choices,
perhaps in parallel, and hope one of them eventually succeeds. At the
point of making a choice, we split the computation into several parts.
Each split-off computations proceed with one of the choices. Everyone
here knows how to split the computations: use fork.
It indeed works. It is interesting to watch, using top, how processes
are launched and how they die, how their number increases and
drops.

15

Implementing non-determinism

let rec choose = function
| [] -> exit 666
| [x] -> x
| (h::t) ->

let pid = fork () in
if pid = 0 then h
else wait (); choose t

let run m = match fork () with
| 0 -> m (); printf "Solution found"; exit 0
| -> try while true do waitpid [] 0 done

with ...

I’d like to point out the fork in run: we split the computation into a
process that does all the work, and the supervisor. As in real life, the
supervisor immediately goes to sleep. It wakes up when all the
workers are finished, to report the achieved result or an exception.
Of course the implementation is slow: Unix processes are quite
heavy-weight. We need lighter processes: green threads, so to speak.
We need a green fork.

16

Green non-determinism

open Delimcc

let p = new_prompt ()

let choose xs = shift p (fun k -> List.iter k xs)

let run m = push_prompt p m

And here is the green implementation. The function shift is like fork.
The latter returns to the parent a pid. In contrast, shift returns to the
parent the representation k of the child process, as a function. The
child process is suspended. (Please take the body of shift, List.iter
k xs, as the parent computation and the computation where shift
appears, the ‘outside’, as the child computation.) When the parent
applies k to a value, the child process is resumed with that value.
These difference between shift and fork are superficial, right? The
function push prompt too splits the computation, creating the worker
that executes m, and the supervisor that waits, handles failures and
gets the result. In a sense, push prompt is like the try block. The
prompt is akin to a communication channel, which the child process
uses to tell the supervisor of its final result or exception.

17

Outline

Applications

Introduction to delimited continuations

I Implementation

18

Highlights of delimcc

I It is a byte-code library
I no changes to OCaml compiler/runtime
I perfect source- and binary- compatibility

I Direct
I no code transformations
I only the needed continuation prefix is captured
I fully integrates with native exceptions

I General
I don’t mess with the stack
I extensible to other languages

I An informally justified implementation of the formally
justified abstract machine

Our delimcc is a library, making no changes to the compiler or the
run-time system of OCaml. Therefore, it is perfectly compatible with
the existing source code and even already compiled byte-code. It is
direct in that it captures only the needed part of the control stack.
The implementation is general. We don’t mess with the stack
(introducing new frames or changing stack frames to mark them). We
use OCaml’s own operations for stack manipulation. Since we
consciously avoid being tied to the structure of the stack, the
implementation can be extended to the languages other than OCaml.
The implementation is not fully formally derived, and no Coq was
used. The correctness argument cannot be formal: after all, there is
no formal specification of OCaml, with or without delimited control.
The library implements an abstract machine that is formally justified
by the definitional machine.

19

Generality and justification

I Start with the definitional machine
I Formally transform to a form suitable for implementation
I Derive scAPI, minimalistic API for low-level stack

manipulation
I Determine how OCaml byte-code machine implements

scAPI already
I Implement delimcc in OCaml code, using scAPI via FFI

We outline the process by which the library was half-way–formally
derived. The details are in the paper.

20

scAPI

type ek
type ekoff
type ekfragment

val get ek : unit -> ek
val add ek : ek -> ekoff -> ek
val sub ek : ek -> ek -> ekoff
val pop stack fragment : ek -> ek -> ekfragment
val push stack fragment : ekfragment -> unit

I No operations to scan the stack for a particular frame
I The format of the stack is unknown
I Porting delimcc to a different language ≡ porting scAPI
I delimcc in Scheme; memory-efficient shift/reset in Scheme

Here is the scAPI. We have abstract types describing a mark on a stack
(ek), a fragment of the stack between two marks, and the offset
between two marks. We need operations to extract a fragment of the
stack between two marks and to put the fragment on the top of the
stack. There are no operations to scan the stack looking for a
particular frame.
Porting delimcc to a different language is essentially figuring out how
that other language could implement scAPI; the rest is automatic. As
an illustration, the delimcc distribution shows how delimcc can be
ported to Scheme. Specializing that implementation to one prompt
gives a new implementation of the ordinary shift/reset in Scheme. It
is different from that by Danvy and Filinski: our shift always captures
only the needed prefix of the whole continuation, even though it relies
on call/cc.

21

Continuations and exceptions

let test2_ex lst =
let f x acc = if x = 0 then raise Zero else x * acc in
let rec loop acc = function
| [] -> acc
| h::t -> try f h (loop acc t) with Other -> -1

in
try loop 1 lst with Zero -> 0

let test2_abort lst =
let p = new_prompt () in let p’ = new_prompt () in
let f x acc = if x = 0 then abort p 0 else x * acc in
let rec loop acc = function
| [] -> acc
| h::t -> push_prompt p’ (fun () -> f h (loop acc t))

in
push_prompt p (fun () -> List.fold_right f lst 1)

What is this stack mark? How can we get hold of it if we don’t even
know the structure of the stack? Let me use the following benchmark
code from the delimcc distribution to describe marks. The goal is to
return the product of the elements in a list of integers. Once we
encountered a zero, we can return the result immediately. To this end,
we throw an exception. The (contrived) code illustrates installing
handlers for other exceptions. They are transparently skipped over by
our exception Zero.

21

Continuations and exceptions

let test2_ex lst =
let f x acc = if x = 0 then raise Zero else x * acc in
let rec loop acc = function
| [] -> acc
| h::t -> try f h (loop acc t) with Other -> -1

in
try loop 1 lst with Zero -> 0

let test2_abort lst =
let p = new_prompt () in let p’ = new_prompt () in
let f x acc = if x = 0 then abort p 0 else x * acc in
let rec loop acc = function
| [] -> acc
| h::t -> push_prompt p’ (fun () -> f h (loop acc t))

in
push_prompt p (fun () -> List.fold_right f lst 1)

We can write the code using delimcc. The two implementations have
exactly the same run-time performance, no matter whether zero
appears near the beginning or the end of the list. The function
push prompt is really the try block. The paper spends a great deal
explaining that the mark is the identity of an exception frame; hence
the name ek used in scAPI. The marked frames are created by the
OCaml run-time itself, when the try block is entered. In general, a
language system that has exception handling is implementing a part
of scAPI already. The paper even has a formal argument about it.

22

Undelimited vs delimited continuations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100

C
P

U
 ti

m
e

(s
)

Stack depth

callcc
delimcc

This graph illustrates the other part of scAPI. There exists a library of
undelimited continuations for OCaml, providing callcc. Capturing an
undelimited continuation copies the whole stack. The callcc library
distribution comes with a co-routine benchmark. We can invoke the
benchmark either at the top-level (stack depth 0), or from a non-tail
recursive function that called itself 10, 20, etc. 100 times. The graph
plots the running time vs. the stack depth. We also re-implemented
the benchmark using delimited continuations. Again, we plot the
running time vs. the depth of the stack at the time the benchmark was
invoked. In either case, the benchmark creates two co-routines, which
invoke each other. We need to only capture the continuation of the
current co-routine to the start of the benchmark. The delimcc
implementation does exactly that; it doesn’t copy the whole stack. To
actually copy a part of the stack we use OCaml’s own mechanism to
copy the stack to re-size it.

23

Conclusions
Abstract and concrete implementations of delimited
control in OCaml

I Concrete: delimcc
I Abstract: minimalistic scAPI; formally relating exception

handling to delimited control

delimcc as an existence proof

I efficient implementation
I non-invasive implementation
I in a typed language
I in a language designed without regard to continuation

passing
I no compiler plug-ins
I no run-time extensions beyond the basic FFI

We have presented abstract and concrete implementations of
multi-prompt delimited control. The concrete implementation is the
delimcc OCaml library, which has been fruitfully used for over four
years. The abstract implementation has related delimited control to
exception handling and distilled scAPI, a minimalistic API, sufficient
for the implementation of delimited control. A language system
accommodating exception handling and stack-overflow recovery is
likely to support scAPI. The OCaml byte-code does support scAPI, and
thus permits, as it is, the implementation of delimited control. We
described the implementation of delimcc as an example of using scAPI
in a typed language. This library shows that delimited control can be
implemented efficiently (without copying the whole stack) and
non-invasively in a typed language that was not designed with
delimited control in mind and that offers no compiler plug-ins or
run-time extensions beyond a basic foreign-function interface.

24

The idea to remember

shift is a

	Applications
	Introduction to delimited continuations
	Implementation

