
Clicking on Delimited Continuations

http://okmij.org/ftp/packages/caml-shift.tar.gz
http://okmij.org/ftp/ML/caml-web.tar.gz

Continuation Fest 2008
Tokyo, Japan April 13, 2008

FLOLAC 2008
Taipei, Taiwan July 11, 2008

http://okmij.org/ftp/packages/caml-shift.tar.gz
http://okmij.org/ftp/ML/caml-web.tar.gz

We give a light introduction to delimited continuations and unmask
them in operating system context switching and input/output. Web –
the interaction between a browser and a web server – let loose
delimited continuations and made them clickable. That is why web
programming without first-class delimited continuations is so
unnatural. Conversely, the ability to capture and store delimited
continuations makes coding web applications (CGI scripts) as
straightforward as writing interactive console applications using read
and printf, or writing a dialogue in a play. We no longer have to guess
the question from an answer. We do not even need to repeat a
question, letting the user repeat an answer instead (using the ‘Back
button’).
We demonstrate the natural web programming style by writing and
running live two multi-form web applications, one of which is a
simple blog. We use a library of persistent delimited continuations for
bytecode OCaml programs. The library also supports nested
transactions. In a live demo we show that a user may repeatedly go
back-and-forth between editing and previewing their blog post,
perhaps in several windows. The finished post can be submitted only
once.

1

?

2

Outline

I Delimited continuations
Delimited evaluation contexts, processes, breakpoints
Control operators shift and reset
A taste of formalization

Continuations and Web Services
A simple TTY application
CGI and the inversion of control
Interaction and continuations
Plain CGI scripts and persistent continuations

Web Transactions
“Please click the Submit button only once”
A simple blog as a TTY application
A simple blog as a CGI application with nested transactions

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function
int →∞

Partial context delimited continuation function
int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them
or not

This print expression is the whole program, which we want to run. To
this end, we first focus (technical term) on the (sub)expression 2 ∗ 3 so
to compute it first. If we cut this expression from the program, what is
left is a program with the hole. The hole is the place where 2 ∗ 3 used
to be and which we later fill with the result of evaluating 2 ∗ 3. The
expression with the hole is called context. The undelimited
continuation is the meaning of the context. It is a function from what
me may put in the hole (integers in our case) to . . . well, the result of
the whole program. This is what computed when the whole program
is fully finished – and so this value is not of much interest to the
program itself as the program will never get to use this value.

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function
int →∞

Partial context delimited continuation function
int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them
or not

When the result is computed, the program is already dead. For
example, we usually don’t care of the value computed by our e-mail
program. We are much more interested in what the e-mail program
does before it finishes or dies (i.e., has it sent the message or not).

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function
int →∞

Partial context delimited continuation function
int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them
or not

Beside the full context, we may also want to consider its prefix. That
is, we may (mentally, for now) distinguish a subterm of a program,
42 + abs(2 ∗ 3). We may imagine a boundary within print(). Taking
out 2 ∗ 3 leaves a hole in our subterm just as it did in the whole
program. This subterm with a hole is called a partial (evaluation)
context, whose meaning is a partial continuation. (The subterm with a
hole can be plugged into a bigger hole). The partial continuation is
also a function, also from integers in our case (the type of the values
that can be placed in the hole, e.g., the result of evaluating 2 ∗ 3).
Now, however, we do care of the produced result (also called the
answer), since we can do something meaningful with it: plug into a
hole. So, the delimited continuation in our case is a function from int
to int, namely, the function that takes an integer and adds to its
absolute value 42.

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(6))

Contexts and continuations are present whether we want them
or not

Let us observe what happens with the partial context as we are
evaluating the term. We see the context shrinks as subterms are
reduced and are replaced with values.

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if 6>0 then 6 else neg(6))

Contexts and continuations are present whether we want them
or not

We also see the partial context expand when functions are invoked
and their bodies are inlined.

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if true then 6 else neg(6))

Contexts and continuations are present whether we want them
or not

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + 6)

Contexts and continuations are present whether we want them
or not

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them
or not

Finally, our distinguished subterm is reduced to a single value and is
no longer useful to distinguish it. Nothing can ever happen to 48.

3

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them
or not

So, the boundary and the yellow thing it envelops disappear. I
apologize for the triviality of all of this. We will see more interesting
examples next. We will also make the notions of disappearing
boundaries and plugging of the hole precise.
Whether we are concerned with the continuations or not, they are
always present.
(Delimited) continuations are the meanings of (delimited) evaluation
contexts.

4

Control effects: Process scheduling in OS

Operating system, User process, System call

schedule(main () {... read(file) ...}) ...

Let us consider a different example: the OS has invoked a user
process, and the process is about to make a system call, that is,
request the OS, the supervisor, to read from a given file. The slide
shows the state of the whole program at this point.
Now it makes great sense to distinguish the subterm that represents
the user program (in yellow) from the rest. This is the kernel-user
boundary. This example also makes it clear why we usually don’t care
of the result of the whole program: when the OS returns a result it is
because it crashed, at which point we quickly reboot.

4

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

We do one step of evaluation, and see the different picture from the
one in the earlier example. All spread-out yellow stuff has
disappeared in one step, replaced with this term
ReadRequest(PCB,file). Such a behavior is characteristic of control
effects. But the yellow stuff is not gone, it is somehow ‘saved’ in the
value we call here PCB, or, the process control block in the OS
parlance. How the context is saved is not important for us now. We
only need to know that the saved context can be restored.

4

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

When the OS gets around to reading from a file, it does the following
operation. The next reduction is:

4

Control effects: Process scheduling in OS

Capture, Invoke

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

We get the picture very similar to the original one, only with "read
string" in place of read(file).
We have seen thus the two control operations on the contexts:
capturing a context (saving it in a value like PCB) and restoring it. The
latter operation takes the captured context (PCB), a value (”read
string”), plugs the value into the saved context and puts the result in
the context of the restoring operation. It is easy to see that this
context invocation looks exactly like the function application (cf the
invocation of abs(6) in the first example).

4

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

User-level control operations ⇒ user-level scheduling, thread
library

The operations of capturing and resuming are obviously special, here
in the sense that only OS can do them. One may imagine context
capturing and restoring available to user programs, too. We can then
implement user-level threads and write scheduling libraries.
Captured continuation can be invoked once, none, or several times.

5

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

5

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

5

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

5

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

debug run(42 + abs(2 * 3))

We note that we don’t have to resume from the breakpoint at all. But
we did execute resume (BP1,3), which restored the context, replaced
the breakpoint expression with 3, and continued running the program.
Suppose we don’t like the computed result, 48 in our case. We still
possess the captured continuation saved as BP1. We can resume it
again, with a different value. We do normal debugging work.

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

Debugger is an external tool, separate from a program. Can
debugging be available in the program itself? Control operators let us
implement debugging: the breakpoint and debug run. Let us redo the
debugging session above, this time using the real OCaml code.
We use the library Delimcc of delimited control operators for bytecode
OCaml. It is a pure library, it does not modify the OCaml system in
any way. The library provides many control delimiters, called
‘prompts’. The function push prompt (a pseudo-special form, hence
the argument is a thunk) sets the delimiter, marking the boundary of
the delimited context. We use only one prompt in all our examples. In
such a case it is common to regard the prompt implicit and call
push prompt ‘reset’.
Here’s our earlier expression, color-coded. The type breakpt describes
the result of the whole yellow expression. The argument of BP denotes
the yellow expression with the white hole; its type is int->breakpt. It
is this delimited context that is captured by shift.

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

let v2 = let BP k = v1 in k 3

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

let v2 = let BP k = v1 in k 3
let v2 = push prompt p0 (fun () ->

Done (42 + abs(2 * 3))

We note that we don’t have to resume from the breakpoint at all. But
we did: applying k to 3 restored the context, replaced the breakpoint
expression with 3, and continued running the program. The restored
context is enclosed in push prompt.

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

let v2 = let BP k = v1 in k 3
let v2 = push prompt p0 (fun () ->

Done (42 + abs(2 * 3))

val v2 : breakpt = Done 48

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

let v2 = let BP k = v1 in k 3
val v2 : breakpt = Done 48

let v2’ = let BP k = v1 in k (-5)

Suppose we don’t like the computed result, 48 in our case. We still
possess the captured continuation saved as v1. We can resume it
again, with a different value. So, we can do backtracking, answer
what-if questions, and implement non-determinism.

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

let v2 = let BP k = v1 in k 3
val v2 : breakpt = Done 48

let v2’ = let BP k = v1 in k (-5)
let v2’ = push prompt p0 (fun () ->

Done (42 + abs(2 * -5))

6

Programmable debugger

open Delimcc let p0 = new prompt ()
type breakpt = Done of int | BP of (int -> breakpt)

let v1 = push prompt p0 (fun () ->

Done (42 + abs(2 * shift p0 (fun k -> BP k)))

val v1 : breakpt = BP <fun>

let v2 = let BP k = v1 in k 3
val v2 : breakpt = Done 48

let v2’ = let BP k = v1 in k (-5)
let v2’ = push prompt p0 (fun () ->

Done (42 + abs(2 * -5))

val v2’ : breakpt = Done 52

7

Debugging an iteration

module CSet =
Set.Make(struct type t=char let compare=compare end)

let set1 = List.fold right CSet.add
[’F’;’L’;’O’;’L’;’A’;’C’;’0’;’8’]
CSet.empty
val set1 : CSet.t = <abstr>

CSet.iter (fun e -> print char e) set1
08ACFLO

Set is the standard OCaml module for ordered sets, ordered
collections of elements with no duplicates. Set has the usual methods:
empty, add, union, intersection, etc. Among the methods is iter,
which applies a given function to each element, in order. In our case,
we build the set of characters, populate it with characters in this list.
We pass print char to iter, which prints each element of the set, in
order. You can see the result: in order, no duplicates.

8

Debugging an iteration, cont

type cursor = EOF | Cons of char * (unit -> cursor)
let pc = new prompt ()

let sv1 = push prompt pc (fun () ->

CSet.iter(fun e-> shift pc (fun k -> Cons (e,k))) set1;

EOF)
val sv1 : cursor = Cons (’0’, <fun>)

The module Set is part of the standard library; we can’t modify it, we
can’t add any new methods. We can still ‘debug’ it. We set the
break-point in the function we pass to iter. Whenever iter invokes our
function, we break on the breakpoint, and report the element given by
iter.

8

Debugging an iteration, cont

type cursor = EOF | Cons of char * (unit -> cursor)
let pc = new prompt ()

let sv1 = push prompt pc (fun () ->

CSet.iter(fun e-> shift pc (fun k -> Cons (e,k))) set1;

EOF)
val sv1 : cursor = Cons (’0’, <fun>)

let next = function Cons (,k) -> k ()
let sv2 = next sv1;;
val sv2 : cursor = Cons (’8’, <fun>)

let sv3 = next sv2;;
val sv3 : cursor = Cons (’A’, <fun>)

8

Debugging an iteration, cont

type cursor = EOF | Cons of char * (unit -> cursor)
let pc = new prompt ()

let sv1 = push prompt pc (fun () ->

CSet.iter(fun e-> shift pc (fun k -> Cons (e,k))) set1;

EOF)
val sv1 : cursor = Cons (’0’, <fun>)

let rec take n c = match (n,c) with
| (0,) | (,EOF) -> []
| (n,Cons (e,k)) -> e:: take (pred n) (k ())

take 5 sv2
- : char list = [’8’; ’A’; ’C’; ’F’; ’L’]

The interface Set does offer a method to get the minimal element; but
no method to get the 2nd minimal, 3d minimal, etc. The function
take lets us take the n minimal elements starting from any position –
in this case, after the first minimal element.
In the first debugging example, it might appear that call/cc would
have sufficed. The function take makes it clear that we really need a
delimited continuation. When take invokes (k ()) in take (pred n)
(k ()) to continue the iteration one more step, (k ()) is expected to
return a value. If the breakpoint triggered in executing (k ()) captured
the whole continuation, take would have been captured as well. We
wish to ‘debug’ only iter rather than the whole program, and we
wish take to run our ‘debugging session’.
Other applications, beside enumerator inversion: non-destructive
updates (see the ‘Zipper File System’), transactions.

9

CBN λtt| -calculus

Primitive Constants D ::= john | mary | see | tall | mother
Constants C ::= D | C∧C | c | ∀c | ∂c
Terms E, F ::= V | x | FE | E f F | Q $ E | tt|k : S. E
Values V ::= C | u | λx :T. E | W
Strict Values W ::= λ!u:U. E
Coterms Q ::= # | E, Q | Q;! W | E,c Q | Q;c V
Term equalities
Q $ FE = E, Q $ F Q $ WE = Q;! W $ E
Q $ F f E = E,c Q $ F Q $ V f E = Q;c V $ E
$ V = V

Transitions
Q1 $ · · · $ Qn $ (λx. E)F Q1 $ · · · $ Qn $ E{x 7→ F}
Q1 $ · · · $ Qn $ (λ!x. E)V Q1 $ · · · $ Qn $ E{x 7→ V}
Q1 $ · · · $ Qn $ C1 f C2 Q1 $ · · · $ Qn $ C1∧C2
Q1 $ · · · $ Qn $ Q $ t

t|k. E Q1 $ · · · $ Qn $ # $ E{k 7→ Q}

Earlier I was waiving hands along with bits of code. That will continue
through the rest of the talk. Some say it is not a science unless it is
written in Greek. I’m therefore obliged to demonstrate that delimited
continuations are science. Here: lots of Greek and bizarre typography
like subscripted commas. I won’t describe any of that. This is a slide
for my talk in a month. The slide describes a bit more general
calculus: CBN with shift/reset, which embeds CBV through strict
functions. The best application of the calculus seems to be linguistic,
that’s why our constants here are not integers but elements of a
semantic domain.
Th slides shows dynamic, operational semantics. There is also a sound
type system and a type-checking/Church-style reconstruction
algorithm. I won’t show it; it won’t fit on one slide.

9

CBN λtt| -calculus

Primitive Constants D ::= john | mary | see | tall | mother
Constants C ::= D | C∧C | c | ∀c | ∂c
Terms E, F ::= V | x | FE | E f F | Q $ E | tt|k : S. E
Values V ::= C | u | λx :T. E | W
Strict Values W ::= λ!u:U. E
Coterms Q ::= # | E, Q | Q;! W | E,c Q | Q;c V
Term equalities
Q $ FE = E, Q $ F Q $ WE = Q;! W $ E
Q $ F f E = E,c Q $ F Q $ V f E = Q;c V $ E
$ V = V

Transitions
Q1 $ · · · $ Qn $ (λx. E)F Q1 $ · · · $ Qn $ E{x 7→ F}
Q1 $ · · · $ Qn $ (λ!x. E)V Q1 $ · · · $ Qn $ E{x 7→ V}
Q1 $ · · · $ Qn $ C1 f C2 Q1 $ · · · $ Qn $ C1∧C2
Q1 $ · · · $ Qn $ Q $ t

t|k. E Q1 $ · · · $ Qn $ # $ E{k 7→ Q}

Symmetry of shift and lambda: both are binding forms; one binds a
variable, the other binds a co-variable. When lambda-abstraction is
applied, it takes a term on the right and substitutes into the body.
When shift is applied, it takes a co-term on the left and substitutes
into the body.

10

Outline

Delimited continuations
Delimited evaluation contexts, processes, breakpoints
Control operators shift and reset
A taste of formalization

I Continuations and Web Services
A simple TTY application
CGI and the inversion of control
Interaction and continuations
Plain CGI scripts and persistent continuations

Web Transactions
“Please click the Submit button only once”
A simple blog as a TTY application
A simple blog as a CGI application with nested transactions

You can see from the outline that we will be talking and showing that
persistent delimited continuations are the natural fit for CGI
programming. The message of this talk is that we can write CGI
applications in exactly the same way we write console applications.

This talk is simple, may be too simple: it contains no theorems and no
Greek symbols. It seems many in the audience are the developers,
who probably won’t mind seeing bits of code.

11

Running example, a console version

Demonstrate test Queinnec tty, the interactive console
version

The main example for the first part of the talk is the example by
Christian Queinnec, from his famous ICFP00 paper. This is the paper
that first pointed out that web has made continuations clickable.

The application is the currency conversion, in three screens. We
demonstrate the interactive console version:
./test Queinnec tty 2> /tmp/log

The original application used French Francs as the currency, which is
no longer in circulation. I took the liberty to substitute Yen.

12

Running example

let main () =
let henv = inquire "currency_read_rate.html" [] in
let curr_name = answer "curr-name" henv vstring in
let curr_rate = answer "rate" henv vfloat in
let henv = inquire "currency_read_yen.html"

[("curr-name",curr_name)] in
let amount = answer "curr-amount" henv vfloat in
let yen_amount = amount /. curr_rate in
inquire_finish "currency_result.html"
[("curr-name",curr_name);("rate",string_of_float curr_rate);
("curr-amount",string_of_float amount);
("yen-amount", string_of_float yen_amount)];
exit 0 (* unreachable *)

13

Templates

<html><head>
<title>Currency converter with respect to ¥. Form 2</title>
</head><body>
<H1 ALIGN=CENTER>Example of (delimited) continuations on the Web</H1>

<div>${response}</div>

<form action="${this-script}" method="GET">
<input type=hidden name="klabel" value="${klabel}" size=10 maxsize=10>
Converting ${curr-name} into ¥.
<table>
<tr><td>Enter the amount:
<td align=right>
<input type=text name="curr-amount" value="${curr-amount}" size=10 maxsize=10>
</table>
<INPUT name=submit TYPE=Submit>
</form>
</body></html>

Here is one of the templates.
One can write the template in any HTML or text editor, using any
language, and add as many CSS or Flash animations as one wishes. In
this talk, I’ll keep the pages very simple.

14

Running example

let main () =
let henv = inquire "currency_read_rate.html" [] in
let curr_name = answer "curr-name" henv vstring in
let curr_rate = answer "rate" henv vfloat in
let henv = inquire "currency_read_yen.html"

[("curr-name",curr_name)] in
let amount = answer "curr-amount" henv vfloat in
let yen_amount = amount /. curr_rate in
inquire_finish "currency_result.html"
[("curr-name",curr_name);("rate",string_of_float curr_rate);
("curr-amount",string_of_float amount);
("yen-amount", string_of_float yen_amount)];
exit 0 (* unreachable *)

14

Running example

let main () =
let henv = inquire "currency_read_rate.html" [] in
let curr_name = answer "curr-name" henv vstring in
let curr_rate = answer "rate" henv vfloat in
let henv = inquire "currency_read_yen.html"

[("curr-name",curr_name)] in
let amount = answer "curr-amount" henv vfloat in
let yen_amount = amount /. curr_rate in
inquire_finish "currency_result.html"
[("curr-name",curr_name);("rate",string_of_float curr_rate);
("curr-amount",string_of_float amount);
("yen-amount", string_of_float yen_amount)];
exit 0 (* unreachable *)

We note the use of the lexical scope across questions. We ask a
question, receive and validate the answer, bind the result to a local
variable curr rate, and use it later to compute the final answer.

Explain inquire in terms gettext.

15

Running example as a typical CGI script
let main () =
let henv = get_form_env () in
match hlocate "klabel" henv with
| None -> send "currency_read_rate.html" []
| Some "got-rate" ->

(match (hlocate "curr-name" henv, hlocate "rate" henv) with
| (Some curr_name, (Some rate as rv)) ->

let _ = validate rv vfloat in
send "currency_read_yen.html"
[("curr-name",curr_name); ("rate",rate)]

| _ -> failwith "need error handling")
| Some "got-amount" ->

(match (hlocate "curr-name" henv, hlocate "rate" henv,
hlocate "curr-amount" henv) with

| (Some curr_name, (Some _ as rv), (Some _ as amv)) ->
let curr_rate = validate rv vfloat in
let amount = validate amv vfloat in
let yen_amount = amount /. curr_rate in
send "currency_result.html" [("curr-name",curr_name);...]

| _ -> failwith "need error handling")
| _ -> failwith "need error handling";

We can re-write the console application into a CGI application. This
slide shows the usual way of writing CGI scripts, with explicit
continuations. We see clearly the inversion of control, the lack of
lexical scope, the need for repeated validation. The inconvenience
becomes even more pronounced if instead of the dispatch on the value
of klabel, we split this script into three (as is common).

We note the different pattern of colors: before we were asking a
question and analyzing the answers. Now, we get the answer and try
to figure what the question was. All the vertical bars indicate lots of
case analysis. We also see the repeated validation of rate.

MS-DOS vs. Mac programming: in MS DOS, we create a window,
position the cursor, write a text. On a Mac, the window is created in
one function, and the drawing is done in another, in response to a
Draw event. Direct vs. round-about style. That’s why event-based
programming, although widely considered superior for
high-performance distributed systems, is relatively infrequent because
it is hard, especially in C and other languages with no convenient
closures.

Queinnec calls this program-centric vs. page-centric. In the former, we
use lexical scope rather than global variables or request objects to
manage intermediate data (‘rate’).

15

Running example as a typical CGI script
let main () =
let henv = get_form_env () in
match hlocate "klabel" henv with
| None -> send "currency_read_rate.html" []
| Some "got-rate" ->

(match (hlocate "curr-name" henv, hlocate "rate" henv) with
| (Some curr_name, (Some rate as rv)) ->

let _ = validate rv vfloat in
send "currency_read_yen.html"
[("curr-name",curr_name); ("rate",rate)]

| _ -> failwith "need error handling")
| Some "got-amount" ->

(match (hlocate "curr-name" henv, hlocate "rate" henv,
hlocate "curr-amount" henv) with

| (Some curr_name, (Some _ as rv), (Some _ as amv)) ->
let curr_rate = validate rv vfloat in
let amount = validate amv vfloat in
let yen_amount = amount /. curr_rate in
send "currency_result.html" [("curr-name",curr_name);...]

| _ -> failwith "need error handling")
| _ -> failwith "need error handling";

16

Running example

let main () =
let henv = inquire "currency_read_rate.html" [] in
let curr_name = answer "curr-name" henv vstring in
let curr_rate = answer "rate" henv vfloat in
let henv = inquire "currency_read_yen.html"

[("curr-name",curr_name)] in
let amount = answer "curr-amount" henv vfloat in
let yen_amount = amount /. curr_rate in
inquire_finish "currency_result.html"
[("curr-name",curr_name);("rate",string_of_float curr_rate);
("curr-amount",string_of_float amount);
("yen-amount", string_of_float yen_amount)];
exit 0 (* unreachable *)

Let us go back to the original, nice and natural console code, and look
at the implementation of the basic primitives, inquire and answer.

17

Interaction in TTY mode

let do_inquire template henv =
send_form stdout henv template;
flush_all ();
let henv = url_unquote_collate (read_line ()) in
HEnv.add hvar_template_name template henv

let inquire template outputs =
let henv =
List.fold_left (fun m (k,v) -> HEnv.add k v m) HEnv.empty outputs in

do_inquire template henv

let inquire_finish template outputs =
let _ = inquire template outputs in exit 0

let answer hvar henv validfn =
validate (fun henv ->
do_inquire (HEnv.find hvar_template_name henv) henv)
hvar henv validfn

Here is the implementation for the console version of the example. We
see that answer does not do much: it extracts a particular answer
from the set of answers henv, converts and validates it. Should the
validation fail, answer repeats the question.

The real work is done by do inquire, which sends the filled-in
template and waits for the sequence of answers. Explain read as the
capturing of a delimited continuation (user process state) by the OS.
I’m obsessed in pointing out that every programmer already knows
and understands the delimited continuations; they might not know
that word though. Everyone knows that when a process executes a
system call like ‘read’, it gets suspended. When the disk delivers the
data, the process is resumed. That suspension of a process is its
continuation. It is delimited: it is not the check-point of the whole OS,
it is the check-point of a process only, from the invocation of main()
up to the point main() returns. Normally these suspensions are
resumed only once, but can be zero times (exit) or twice (fork).

18

Interaction with Continuations

let do_inquire template env =
let send k =

let klabel = gensym () in
Res (Some (klabel,k),template,env) in

let henv = shift p0 send in
HEnv.add hvar_template_name template henv

let inquire template outputs =
do_inquire template (Right outputs)

let inquire_finish template outputs =
abort p0 (Res (None, template, Right outputs))

let answer hvar henv validfn = ... the same ...

Can we do something similar ourselves? Yes, if we have delimited
control operators. Explain shift as a system call, klabel as a PID, and
show a simple scheduler in the run module.

19

Interaction with Continuations: Main loop

let run () =
let rec loop jobqueue =
let (k,template,henv) = try

let henv = url_unquote_collate (read_line ()) in
let Res (k,template,env) = match
try Some (List.assoc (HEnv.find "klabel" henv) jobqueue)
with Not_found -> None with
| None -> push_prompt p0 (fun () -> main (); failwith "na")
| Some k -> k henv in

let henv = match k with
| Some (klabel,_) -> HEnv.add "klabel" klabel henv
| None -> henv in
(k,template,henv)

with e -> base_error_handler (Printexc.to_string e) in
print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
match k with | Some job -> loop (job::jobqueue) | None -> loop jobqueue

in loop []

19

Interaction with Continuations: Main loop

let run () =
let rec loop jobqueue =
let (k,template,henv) = try

let henv = url_unquote_collate (read_line ()) in
let Res (k,template,env) = match
try Some (List.assoc (HEnv.find "klabel" henv) jobqueue)
with Not_found -> None with
| None -> push_prompt p0 (fun () -> main (); failwith "na")
| Some k -> k henv in

let henv = match k with
| Some (klabel,_) -> HEnv.add "klabel" klabel henv
| None -> henv in
(k,template,henv)

with e -> base_error_handler (Printexc.to_string e) in
print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
match k with | Some job -> loop (job::jobqueue) | None -> loop jobqueue

in loop []

19

Interaction with Continuations: Main loop

let run () =
let rec loop jobqueue =
let (k,template,henv) = try

let henv = url_unquote_collate (read_line ()) in
let Res (k,template,env) = match
try Some (List.assoc (HEnv.find "klabel" henv) jobqueue)
with Not_found -> None with
| None -> push_prompt p0 (fun () -> main (); failwith "na")
| Some k -> k henv in

let henv = match k with
| Some (klabel,_) -> HEnv.add "klabel" klabel henv
| None -> henv in
(k,template,henv)

with e -> base_error_handler (Printexc.to_string e) in
print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
match k with | Some job -> loop (job::jobqueue) | None -> loop jobqueue

in loop []

19

Interaction with Continuations: Main loop

let run () =
let rec loop jobqueue =
let (k,template,henv) = try

let henv = url_unquote_collate (read_line ()) in
let Res (k,template,env) = match
try Some (List.assoc (HEnv.find "klabel" henv) jobqueue)
with Not_found -> None with
| None -> push_prompt p0 (fun () -> main (); failwith "na")
| Some k -> k henv in

let henv = match k with
| Some (klabel,_) -> HEnv.add "klabel" klabel henv
| None -> henv in
(k,template,henv)

with e -> base_error_handler (Printexc.to_string e) in
print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
match k with | Some job -> loop (job::jobqueue) | None -> loop jobqueue

in loop []

19

Interaction with Continuations: Main loop

let run () =
let rec loop jobqueue =
let (k,template,henv) = try

let henv = url_unquote_collate (read_line ()) in
let Res (k,template,env) = match
try Some (List.assoc (HEnv.find "klabel" henv) jobqueue)
with Not_found -> None with
| None -> push_prompt p0 (fun () -> main (); failwith "na")
| Some k -> k henv in

let henv = match k with
| Some (klabel,_) -> HEnv.add "klabel" klabel henv
| None -> henv in
(k,template,henv)

with e -> base_error_handler (Printexc.to_string e) in
print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
match k with | Some job -> loop (job::jobqueue) | None -> loop jobqueue

in loop []

A primitive OS scheduler that almost fits into one slide. At the
beginning of the loop we do read line – wait for something to
happen, for data to arrive. In other words, wait for an interrupt.

But this isn’t CGI. These in-memory delimited continuations are
suitable for a persistent server (FastCGI). But a CGI script dies after
the interaction. We need to find a way to survive the death. That is
not as impossible as it sounds. We need to make the captured
continuation persistent.

20

Interaction with Persistent Continuations

type cgi_result’ =
Res of string * (henv,(hvar * string) list) either

type cgi_result = unit -> cgi_result’
type k_t = henv -> cgi_result

let do_inquire template env =
let sendk (k : k_t) () =
let fname = Filename.temp_file "kcgi" "" in
let klabel = Filename.basename fname in
let () = save_state_file fname (Obj.repr k) in
Res (template,add "klabel" klabel env) in
let henv = shift p0 sendk in
HEnv.add hvar_template_name template henv

Here is the implementation of the basic primitives using persistent
delimited continuations.

20

Interaction with Persistent Continuations

type cgi_result’ =
Res of string * (henv,(hvar * string) list) either

type cgi_result = unit -> cgi_result’
type k_t = henv -> cgi_result

let do_inquire template env =
let sendk (k : k_t) () =
let fname = Filename.temp_file "kcgi" "" in
let klabel = Filename.basename fname in
let () = save_state_file fname (Obj.repr k) in
Res (template,add "klabel" klabel env) in
let henv = shift p0 sendk in
HEnv.add hvar_template_name template henv

20

Interaction with Persistent Continuations

type cgi_result’ =
Res of string * (henv,(hvar * string) list) either

type cgi_result = unit -> cgi_result’
type k_t = henv -> cgi_result

let do_inquire template env =
let sendk (k : k_t) () =
let fname = Filename.temp_file "kcgi" "" in
let klabel = Filename.basename fname in
let () = save_state_file fname (Obj.repr k) in
Res (template,add "klabel" klabel env) in
let henv = shift p0 sendk in
HEnv.add hvar_template_name template henv

21

Main Loop with Persistent Continuations

let run () =
let (template,henv) =
try
let henv = get_form_env () in
let Res (template,env) =
match
try Some (locate_cont (HEnv.find "klabel" henv))
with Not_found -> None | Sys_error _ -> None with

| None -> push_prompt our_p0 (fun () -> main (); failwith "na") ()
| Some k -> k henv () in

(template,henv)
with e -> base_error_handler (Printexc.to_string e) in

print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
exit 0

The implementation is almost the same as above. The file system is
now the jobqueue. That is how we gain persistence.
Rather than storing the continuation on disk, we could have serialized
it in a string and included in the web form: fname would have been
the value of the file rather than the name of the file with the stored
continuation. In that case, the Web itself becomes our ‘job queue’.

21

Main Loop with Persistent Continuations

let run () =
let (template,henv) =
try
let henv = get_form_env () in
let Res (template,env) =
match
try Some (locate_cont (HEnv.find "klabel" henv))
with Not_found -> None | Sys_error _ -> None with

| None -> push_prompt our_p0 (fun () -> main (); failwith "na") ()
| Some k -> k henv () in

(template,henv)
with e -> base_error_handler (Printexc.to_string e) in

print_endline "Content-type: text/html\n";
send_form stdout henv template; flush_all ();
exit 0

22

Demo

The back button and the multiple windows
ls -lt /tmp/kcgi*, note the timestamps and the sizes of saved
continuations

Demonstrate the CGI script. Show the benefit of explicit (rather than
OS-captured) continuations: the back button. When going back to the
‘amount’ slide and forth, note that the rate information was stored in
the continuation. We really has kept our state across death.

Show parallel conversions with two different rates (in two different
windows). Although intermediate pages (asking for the amount) look
the same, they correspond to different continuations, embody
different rates, and so produce different results.

Do ls -lt /tmp/kcgi* Note the timestamps of the files (it was the
live test indeed) and the sizes of the stored continuations. Bzip2 can
compress them twice. Describe the benefit of being delimited: only
part of the state is saved.

Stored continuations constitute the trail. We can re-display
computation from each of these points; There are already timestamps;
we can also record for each k what url brought us there (in fact, this
information is already present). If this currency conversion being an
exercise, we can see how a student wandered through it. The student
can see, too, and go back and forth in their exploitation of the
material. Queinnec talks more about trails and exploration of an
interactive course in his ICFP00 paper.

23

Running example

let main () =
let henv = inquire "currency_read_rate.html" [] in
let curr_name = answer "curr-name" henv vstring in
let curr_rate = answer "rate" henv vfloat in
let henv = inquire "currency_read_yen.html"

[("curr-name",curr_name)] in
let amount = answer "curr-amount" henv vfloat in
let yen_amount = amount /. curr_rate in
inquire_finish "currency_result.html"
[("curr-name",curr_name);("rate",string_of_float curr_rate);
("curr-amount",string_of_float amount);
("yen-amount", string_of_float yen_amount)];
exit 0 (* unreachable *)

The demo we have just seen used this code – exactly the same code
that was used in the console application at the beginning of the talk.
We can indeed write CGI code as if it were a console application. We
merely use a different implementation of the i/o primitives.

24

Advantages of delimited continuations

Persistent continuations are twice delimited – in control
and data

I makes them small
I makes them possible
I makes them correct

The thread-local scope (‘thread+offspring’) arises naturally and
requires no implementation

Ease of use

I Unmodified OCaml
I Unmodified web server (e.g., Apache)
I vs. custom Java-based CPS Scheme interpreter and web

server

Queinnec wrote a special Scheme interpreter and a web server in
Java. The interpreter is written in CPS with defunctionalized
continuations. Here, we use the standard, unmodified OCaml. We also
use the standard, unmodified web server (e.g., Apache and w3m). We
write everything in direct style.
Describe ‘twice delimited’ – capture not only part of the stack but also
part of the global closures on the heap referred to from the stack. Like
moving noodles from one bowl to another (one closure pulls the
other). We need to cut the noodles, or closures. When serializing the
code pointer, we don’t serialize the code itself. Likewise, we don’t
serialize all of the global data (In his extended paper, Queinnec
complains about the sizes of stored continuations, which store all
global data).
Emphasize the novelty: just serializing the captured continuation
won’t work (abstract data type chan); and if it worked, it wouldn’t
have been correct (global data structures of the delimcc library itself
would have been captured). Thus serialization is quite a bit more
complex than it appears. The audience is the first to see serialized
delimited continuations in OCaml.
Another benefit of delimited continuations: make natural what
Queinnec calls a new thread+offspring scope – thread-local dynamic
binding – or delimited dynamic binding, described in our ICFP06
paper. This new scope arises quite naturally.

25

Outline

Delimited continuations
Delimited evaluation contexts, processes, breakpoints
Control operators shift and reset
A taste of formalization

Continuations and Web Services
A simple TTY application
CGI and the inversion of control
Interaction and continuations
Plain CGI scripts and persistent continuations

IWeb Transactions
“Please click the Submit button only once”
A simple blog as a TTY application
A simple blog as a CGI application with nested transactions

Show payment.html in a web browser.
Discuss the problem: you pressed ”commit” and the reply page never
came because of some network error. Does it mean that the form
never got submitted (and so the credit card has not been charged and
I have to try again), or that the form did get submitted but the reply is
lost (and so the credit card was charged and I should NOT try again).
There is no way of telling short of waiting and calling the credit card
company.

26

Design of a simple blog
let main () =
let henv = inquire "blog_login.html" [] in
let username = answer "username" henv vstring in
let () = answer "password" henv ...
let rec loop_browse () =
let content = read_blog () in
let henv = inquire "blog_view.html" (("blog-data",content)::env) in
if answer "logout" henv vbool then inquire_finish "blog_logout.html" env
else
if not (answer "new" henv vbool) then loop_browse () else
let henv = inquire "blog_new.html" env in
let rec loop_edit henv =
if answer "cancel" henv vbool then loop_browse () else
let title = answer "title" henv vstring in
let body = answer "body" henv vstring in
let new_post = markup username title body in
if answer "submit" henv vbool then
let () = write_blog new_post in loop_browse ()

else let henv = inquire "blog_new.html" ([("title",title);("body",body);("new-post",new_post)] @ env) in
loop_edit henv

in loop_edit henv
in loop_browse ()

26

Design of a simple blog
let main () =
let henv = inquire "blog_login.html" [] in
let username = answer "username" henv vstring in
let () = answer "password" henv ...
let rec loop_browse () =
let content = read_blog () in
let henv = inquire "blog_view.html" (("blog-data",content)::env) in
if answer "logout" henv vbool then inquire_finish "blog_logout.html" env
else
if not (answer "new" henv vbool) then loop_browse () else
let henv = inquire "blog_new.html" env in
let rec loop_edit henv =
if answer "cancel" henv vbool then loop_browse () else
let title = answer "title" henv vstring in
let body = answer "body" henv vstring in
let new_post = markup username title body in
if answer "submit" henv vbool then
let () = write_blog new_post in loop_browse ()

else let henv = inquire "blog_new.html" ([("title",title);("body",body);("new-post",new_post)] @ env) in
loop_edit henv

in loop_edit henv
in loop_browse ()

Note the nested loop

27

Demo of the blog
1. Login

2. Enter a new article (subject ‘Takao-san’, text ‘great hike’), submit

3. Enter another article (subject ‘Summit’, text ‘many people’)

4. Preview, go back, edit (place ’!’ in the body), preview, optionally
go back, edit again, finally submit

5. Go back to one of the previous pages of editing and previewing
the second article. An attempt to press any of the buttons brings
the main screen. The second article, once submitted, cannot be
resubmitted

6. Duplicate the window (tab)

7. In one window, enter a new article (subject ‘Way back’, text
‘slow’), preview, don’t submit

8. In the other tab, enter a new article (subject ‘Nature course’, text
‘narrow, dark, wonderful’), preview, submit, logout

9. Go back to the first tab still previewing another article. An
attempt to submit brings back the login screen: the closed outer
transaction invalidates all inner ones

28

Simple blog as a transactional CGI script

let rec main () =
let henv = inquire "blog_login.html" [] in
let username = answer "username" henv vstring in
let () = answer "password" henv ...
let env = [("username",username)] in
let edit env = ... in
try
in_transaction env (fun env -> (* user session tx *)
let rec loop_browse () =
let content = read_blog () in
let henv = inquire "blog_view.html" (("blog-data",content)::env) in
if answer "logout" henv vbool then ()
else if not (answer "new" henv vbool) then loop_browse () else
match (try in_transaction env edit with TX_Gone -> None) with
| None -> loop_browse ()
| Some new_post -> write_blog new_post; loop_browse ()

in loop_browse ());
inquire_finish "blog_logout.html" env
with TX_Gone -> main ()

28

Simple blog as a transactional CGI script

let rec main () =
let henv = inquire "blog_login.html" [] in
let username = answer "username" henv vstring in
let () = answer "password" henv ...
let env = [("username",username)] in
let edit env = ... in
try
in_transaction env (fun env -> (* user session tx *)
let rec loop_browse () =
let content = read_blog () in
let henv = inquire "blog_view.html" (("blog-data",content)::env) in
if answer "logout" henv vbool then ()
else if not (answer "new" henv vbool) then loop_browse () else
match (try in_transaction env edit with TX_Gone -> None) with
| None -> loop_browse ()
| Some new_post -> write_blog new_post; loop_browse ()

in loop_browse ());
inquire_finish "blog_logout.html" env
with TX_Gone -> main ()

29

The new post editing function

let edit env =
let henv = inquire "blog_new.html" env in
if answer "cancel" henv vbool then None else (* rollback *)
let title = answer "title" henv vstring in
let body = answer "body" henv vstring in
let new_post = markup username title body in
if answer "submit" henv vbool then Some new_post (* commit *)
else
let () = assert (answer "preview" henv vbool) in
let henv = inquire "blog_preview.html" (("new-post",new_post)::env) in
if answer "submit" henv vbool then Some new_post (* commit *)
else None

CGI: no loop in editing. Show the outer transaction (logged in user)
and the nested editing transaction. Show what it means to commit
and rollback.

in transaction could use delimited env (dynamic binding), so all the
labels etc are dynamically bound.

30

Conclusions

First implementation of persistent twice-delimited
continuations in OCaml

Persistent delimited continuations are the natural fit for
CGI programming

CGI script ≡ console application
with differently implemented IO primitives

I natural dialogue
I lexical scoping, exception handling
I mutable data, if necessary

Delimited continuations are concrete and clickable

Main lesson: Delimited continuations are quite tangible after all.
Every time you click on a submit button, you’re clicking on a delimited
continuation.

	Delimited continuations
	Delimited evaluation contexts, processes, breakpoints
	Control operators shift and reset
	A taste of formalization

	Continuations and Web Services
	A simple TTY application
	CGI and the inversion of control
	Interaction and continuations
	Plain CGI scripts and persistent continuations

	Web Transactions
	``Please click the Submit button only once''
	A simple blog as a TTY application
	A simple blog as a CGI application with nested transactions

