
A network file system over HTTP:
remote access and modification of files and files

Oleg Kiselyov

oleg@pobox.com oleg@computer.org oleg@acm.org
http://pobox.com/~oleg/USENIX99/

Abstract

The goal of the present HTTPFS project is to enable access to remote files, directories, and other containers

through an HTTP pipe. HTTPFS system permits retrieval, creation and modification of these resources as if they

were regular files and directories on a local filesystem. The remote host can be any UNIX or Win9x/WinNT box that

is capable of running a Perl CGI script and accessible either directly or via a web proxy or a gateway. HTTPFS runs

entirely in user space. The current implementation fully supports reading as well as creating, writing, appending,

and truncating of files on a remote HTTP host. HTTPFS provides an isolation level for concurrent file access

stronger than the one mandated by POSIX file system semantics, closer to that of AFS. Both a programmatic

interface with familiar open(), read(), write(), close(), etc. calls, and an interactive interface, via the popular Midnight

Commander file browser, are provided.

Overview

Unlike NFS and AFS, HTTP is supported on

nearly all platforms, from IBM mainframes to

PalmPilots and cellular phones, with a widely deployed

infrastructure of proxies, gateways, and caches. It is also

regularly routed through firewalls. Using standard HTTP

GET, PUT, HEAD and DELETE request methods, a

rudimentary network file system can be created that runs

cross-platform (e.g., Linux, Solaris, HP-UX, and

Windows NT) on a variety of off-the-shelf HTTP

servers: Apache, Netscape, and IIS. The HTTPFS can

be used either programmatically or via an interactive

interface.

HTTPFS is a user-level file system, implemented

by a C++ class library on a client site, and a Perl CGI

script on a remote site. The C++ framework of VNode,

VNode_list, HTTPTransaction,

MIMEDiscreteEntity etc. classes may be

employed directly. Alternatively, HTTPFS functionality

can be extended to arbitrary applications by linking with

a library that transparently replaces standard file system

calls (e.g., open(), stat(), and close()). This operation

does not patch the kernel or system libraries, nor does it

require system administrator privileges. The interposed

functions invoke the default implementations, unless a

file with an "http://" prefix is accessed. The HTTPFS

client framework will handle the latter case. This

permits URLs being used whenever a regular file name

is expected, as an argument to open(), fopen(),

fstream(), or a command-line parameter to file

utilities. No source code needs to be modified, or even

recompiled.

An important feature of HTTPFS is that it can

provide a file-centric view of remote resources and

containers that are not necessarily files or directories on

a remote computer. Anything which an HTTPFS server

can apply GET, PUT, DELETE methods to, and has

timestamps and size attributes, may be accessed and

manipulated as if it were a file. With HTTPFS, an off-

the-shelf application may open(), read(), write() a "file"

that may in reality be a database table, an element in an

XML document, a property in the registry, an ARP

cache entry, or the input or output of a process.

Borrowing from database terminology, HTTPFS

provides an isolation level of "Repeatable Read" for

concurrent file transactions. Once a process opens a file,

it will not see changes to the file made by other

concurrently running processes. This isolation is

different from standard POSIX semantics, which

provides for a "Dirty Read" isolation – updates made to

the file by other processes are visible before the file is

closed. The difference in semantics is important, but

only when a file is being concurrently read and

modified. As was mentioned above, HTTPFS may

permit a file-type access to a table of a relational

database. In this particular case, the "Repeatable Read"

isolation level is appropriate as it is the default for an

ANSI-compliant database.

Hypertext Transfer Protocol

HTTP is an application-level protocol for

distributed, collaborative, hypermedia information

systems [1]. It is a request/response protocol, where the

client submits a request to the server, the server

processes the request, and sends a response to the client.

HTTP is open-ended, in that it allows new request/

response pairs to be defined. The message format is

similar to that used by Multipurpose Internet Mail

Extensions (MIME).

An HTTP transaction is in some sense a remote

procedure call. An HTTP message specifies both an

operation and the data on which to invoke the operation.

The protocol provides facilities for exchanging data

(arguments and results), and meta-data. The latter

specialize a request and a response, carry authentication

information and credentials, or annotate the content.

Most HTTP transactions are synchronous, although

HTTP/1.1 provides for asynchronous and batch modes.

Furthermore, HTTP allows intermediaries (caches,

proxies) to be inserted into the response-reply chain.

An HTTP request includes the name of the

operation to apply and the name of the resource.

Additional parameters if needed are communicated via

request headers, or a request body. The request body may

be an arbitrary stream of bytes. The HTTP/1.1 standard

defines methods GET, HEAD, POST, PUT, DELETE,

OPTIONS, and TRACE, which can be further extended

by a particular server.

• The GET method retrieves the requested data along

with some meta-information about the data.The data is

denoted by a URI (universal resource identifier). The

GET method can be conditional; if the resource has not

been modified since the specified date, no data is

returned. This form is useful when a cached copy of the

resource exists.

• The HEAD method works similarly to the GET

method, except that the server returns only the meta-data

describing the properties of a resource.

• The PUT method stores the supplied data in the

specified URI. Once PUT, the data will be available via

a later GET.

HTTPFS maps these methods to the corresponding file

access operations, while fully preserving the methods'

semantics defined in the HTTP/1.1 document.

Of particular interest is the extensibility of the

HTTP protocol. A client can submit arbitrary headers,

which are available to the corresponding web server.

The server may send arbitrary meta-data as response

headers as well. In addition, a client and a server may

exchange meta-information via "name=value" attribute

pairs of the standard Content-Type: header.

Implementation of HTTPFS: Client

HTTPFS is implemented by a C++ framework. It

carries out HTTP transactions with a server and

maintains a local cache of fetched files and directory

listings. A file being opened for reading or modification

is first fetched from a server in a GET transaction.

However, if the file is already in cache, a conditional

GET request is issued to verify that the cached copy is

up-to-date, and reload it if not. When a file is being

opened for writing, an additional Pragma: header is

included in the GET request to inform the server of the

open mode: O_RDWR, O_WRONLY, O_CREAT,

O_EXCL, O_TRUNC or O_APPEND. The server may

then create, truncate, or lock the resource. A response

from the server is translated into the result of the

open() call. Reads and writes to the opened file are

then directed to the local copy. On close(), if the

local copy has been modified, it is written back using

PUT.

Status inquiries, e.g., stat(), lstat(),

readlink(), etc., are implemented by submitting a

HEAD request. A Pragma: request header tells the

server which particular status information about the

resource is requested.

Scanning of a directory – opendir(),

readdir(), closedir() – is similar to accessing

a file: a GET request is issued for a directory URI, and

the resulting directory listing is locally cached.

Appendix A gives a detailed mapping between the

file system API and HTTP requests and responses.

Implementation of HTTPFS: Server

A MCHFS server is one particular HTTPFS server.

It is a Perl CGI script which executes HTTPFS requests

and provides access to resources and containers. In the

case of MCHFS, the resources and containers happen to

be regular files and directories of a computer that runs

this CGI script. The script thus lists directories on its

own server, sends files, and accepts new content for old

or newly created files.

According to a tradition, an HTTP server operates

in a "chroot"ed environment. For example, when

asked to retrieve a resource http://hostname/

README.html, the server sends a file located at

$DOCUMENT_ROOT/README.html (if exists), where

$DOCUMENT_ROOT is something like

/opt/apache/htdocs. MCHFS honors this

convention:

open("http://hostname/cgi-bin/admin/MCHFS-

server.pl/README.html", O_RDONLY)

will let you access the same $DOCUMENT_ROOT/

README.html file. Still MCHFS offers to escape the

"chroot"ed confines and access files anywhere in its

file system. This can be accomplished by using a

distinguished path component DeepestRoot, which

refers to the root of the server's file system. For

example:

open("http://hostname/cgi–bin/admin/MCHFS-

server.pl/DeepestRoot/etc/passwd",O_RDONLY);

open("http://hostname/cgi–bin/admin/MCHFS-

server.pl/DeepestRoot/WinNT/Profiles/Administ

rator/NTusers.dat",O_RDONLY);

This is discussed further in the section on security

considerations, below.

MCHFS allows any web browser to view directory

listings and files. A directory request is returned as plain

text, in a format similar to a 'ls -l' listing. Because

MCHFS understands regular GET requests, you can use

a web browser to verify that MCHFS is installed and

functioning properly. Any other user agent – Wget or

the plain telnet – may be employed as well.

Transparent replacement of system
calls

An application accesses the file system API either

using low-level open/read/write/close calls, or via

abstract file system interfaces (e.g., standard I/O, stream

I/O, or ports). The latter are implemented, under the

covers, through the open/read/write/close. Once these

low-level functions are impersonated (and extended to

handle http:// "file names"), HTTPFS becomes

available to any application without modifying the

application's source code.

One does not need to patch the kernel or system

libraries to intercept the POSIX filesystem API calls.

One can do it safely, and without system administrator

privileges by linking the application with replacement

versions of these low-level API functions. The recipe

for doing so is as follows:

• compile a stub function with the name of the

replaced routine;

• partially and statically link the stub with default

implementations of the functions being intercepted;

• link the result with an application, the HTTPFS

client library, and necessary standard libraries; the link

mode may be either static, dynamic, or mixed.

Source code for an application is not required, only its

object (compiled) form; the application need not be

aware that it is using HTTPFS.

A web page [2] explains this technique in detail,

and discusses another use of this interception approach:

implementing processes-as-files.

HTTPFS and Midnight Commander

The Midnight Commander is a directory

browser/file manager for Unix-like operating systems

[3]. Its interface is similar to that of John Socha's

Norton Commander for DOS as well as to Microsoft

Windows' Explorer. The Midnight Commander (MC)

can show the contents of two directories at the same

time. Besides the file names, the views may display

size, type, modification date, and other file attributes.

The MC lets you select a group of files from the current

view, and perform a number of operations (copy,

rename, view, edit, etc) on the current file or selection

with one or few keystrokes or mouse clicks.

MC supports remote file access via MCFS, a

remote file access protocol that requires that an MCFS

server be running on a remote machine. I provide an

"adapter" – an MCFS server linked to a HTTPFS client

– that translates MCFS orders to HTTPFS requests.

Thus Midnight Commander gains an ability to access

remote files via HTTPFS for free, without any

modifications to its code.

The following sample session hopefully shows

what good the HTTPFS/MC alliance can do. This is a

transcript of an actual session, with only hostnames

changed.

• mc -d mc:sol-server/sol-

server:80/cgi-bin/admin/MCHFS-

server.pl/DeepestRoot/tmp

This command launches MC and has it display the

listing of a /tmp directory on a remote computer sol-

server (SunSparc/Solaris 2.6). The mc:sol-

server component in the "directory name" above

refers to the computer that executes the MC/HTTPFS

adapter. The adapter may run on the same computer

with MC, or alongside the HTTPFS server, or on some

other site.

• Select a file on the current pane, and press F3. A

built-in MC viewer shows the contents of that remote

file.

• With the selection bar still on that file, press F4.

A built-in editor is launched, which lets you alter the

remote file as if it were a local file.

• Press F5 to copy the file to a local directory listed

on the other MC's pane.

• Switch to that pane and type

cd mc:sol-server/winnt-server/cgi-

bin/admin/MCHFS-server.pl/wwwroot

The pane lists a remote directory

DocumentRoot/wwwroot on a WinNT host

winnt-server, which runs IIS. The first MC pane

still shows the contents of the /tmp directory on sol-

server. By selecting files and pressing F5, you may

copy files from one remote directory onto the other. In

this example, MC, MC/HTTPFS adapter, and HTTPFS

server are running on three different computers.

• You notice a file US98talk.tar.gz in the

sol-server:/tmp directory. If you highlight the

file and press F3, you can navigate this remote tar

archive as if it were a directory tree. You can select files

(members of that remote archive), view and copy them

as if they were on your local filesystem.

Pushing the envelope and security
holes

The MCHFS script obviously opens up the file

system of a host computer to the entire world.

Furthermore, if a particular HTTPFS server chooses to

interpret GET/PUT requests as output/input from an

application (sh in particular), the whole system

becomes exposed. Clearly this may not be desirable.

Therefore, one may want to restrict access to MCHFS

to trusted hosts or users. These authentication/

authorization policies are the responsibility of a web

server's administrator; MCHFS need not be aware of

them.

In addition, the MCHFS server may implement its

own resource restriction policies. For example, it can

refuse PUT requests, which effectively makes exported

file systems read-only. MCHFS could permit

modification or listing of only certain files, or disallow

use of DeepestRoot and ".." in file paths, thus

confining users to a limited part of the file system tree.

Related work

HTTPFS is similar to FTPFS, a virtual file

system used by Midnight Commander, Emacs and KDE

to access remote FTP sites. There is also a similarity to

NFS. There are, however, a number of differences:

• HTTPFS operates through TCP channels using

HTTP, a simple stateless reliable protocol. HTTP is

less resource-hungry than FTP.

• HTTPFS can talk to any host that runs an HTTP

server and capable of executing a Perl CGI script.

• HTTPFS works transparently through firewalls,

HTTP proxies and Web caches.

• HTTPFS also stands to benefit from various

caching, load-balancing and replication facilities that

web gateways offer.

• HTTPFS can rely on authentication mechanisms

already built into Web servers, in addition to its own

access control.

• HTTPFS can serve "files" and list "directories"

that are created on the fly. In particular, HTTPFS

permits browsing of a remote database as if it were a

local filesystem.

• Whenever a remote file or directory get accessed or

modified, HTTPFS can synchronously fire up triggers

and run hooks. This is very difficult to accomplish with

FTP.

See [4] for a description of another data-distribution

service that builds upon HTTP riches. Design of a

Linux-specific HTTP-based filesystem, in the context of

WebDAV, userfs and perlfs, is discussed in [5].

Availability and installation

The MCFS/HTTPFS adapter distribution is freely

available from a HTTPFS web page

http://pobox.com/~oleg/ftp/HTTP-VFS.html

The distribution archive contains the complete and self-

contained source code for the server and the adapter, and

an INSTALL document. A manifest file tells what all

the other files are for.

I have personally run the MCHFS on HP-UX and

SunSparc/Solaris with Netscape and Apache HTTP

servers, and on Windows NT running IIS. The HTTPFS

client – the MC/HTTPFS adapter in particular – ran on

Sun/Solaris, HP-UX, and Linux platforms. The adapter

successfully communicated with a Midnight

Commander on a Linux host (MC version 4.1.36, as

found in S.u.S.E. Linux distribution, versions 5 and 6).

I have not yet implemented the unlink(),

rename(), mkdir(), and chmod() file system

calls. I should also look into persistent HTTP

connections and an option of transmitting only selected

pieces of a requested file, which HTTP 1.1 allows (and

encourages).

Summary: the OS is the browser

This article presents a poor-man's network file

system, which is simple, very portable, and requires the

least privileges to set up and run. HTTPFS offers a

glimpse of one of Plan9's jewels – a uniform file-

centric naming of disparate resources – but without

Plan9. This file system showcases HTTP, which is

capable of far more than merely carrying web pages.

HTTP can aspire to be the kingpin protocol that glues

computing, storage, etc. resources together to form a

distributed system – the role 9P plays in Plan9 [6].

The design of HTTPFS suggests that, contrary to a

cliche, it is the OS that is the browser. While Active

Desktop lets you view local files and directories as if

they were web pages, HTTPFS allows access to remote

web pages and other resources as if they were local files.

HTTPFS has all the attributes of an OS component: it

implements (a broad subset of) the filesystem API; it

maintains "vnodes" and "buffer caches"; it interacts with

a persistent store and offers a uniform file-centric view

of various remote resources. On the other hand,

HTTPFS provides a superset of remote access services

every Web browser has to implement on its own. The

HTTPFS and other local and network filesystems

manage storage and distribution of content, while an

HTML formatter along with xv, ghostscript and

similar applications provide interpretation and rendering

of particular kinds of data. Thus as far as the OS is

concerned, viewing a web page is to be thought similar

to displaying an image file off an NFS-mounted disk,

and searching the Web is no different than executing

find/grep on a local filesystem.

References

[1] "HTTP Version 1.1," R. Fielding, J. Gettys, J.

Mogul, H. Frystyk Nielsen, and T. Berners-Lee,

January 1997. RFC-2068

[2] "Patch-free User-level Link-time intercepting of

system calls and interposing on library functions," Oleg

Kiselyov <http://pobox.com/~oleg/ftp/syscall-

interpose.html>

[3] “The Midnight Commander”

<http://www.gnome.org/mc/>

[4] "Pushing Weather Products via an HTTP pipe.

Introduction to Metcast," Oleg Kiselyov

<http://zowie.metnet.navy.mil/~spawar/JMV-

TNG/>

[5] "An HTTP filesystem for Linux?"

<http://rufus.w3.org/linux/httpfs/>

[6] "Plan 9 from Bell Labs," Rob Pike, Dave

Presotto, Sean Dorward, Bob Flandrena, Ken

Thompson, Howard Trickey, Phil Winterbottom

<http://plan9.bell-

labs.com/plan9/doc/9.html>

Acknowledgement

Comments, suggestions, and shepherding by Chris

Small are greatly appreciated.

Appendix A

Mapping between file system API and HTTP requests and responses

File System API call HTTP request issued

open filename-URL oflags mode GET filename-URL

Pragma: httpfs="preopen-xxxx"

If-modified-since: yyyyy

where xxxx encodes the file status flags and file access modes as given by oflags: O_RDONLY, O_RDWR,

O_WRONLY, O_CREAT, O_EXCL and O_TRUNC. The HTTPFS server delivers the file if needed, and verifies that

the resource can indeed be retrieved, modified, created or truncated. A VNodeFile is created to describe the opened

resource and point to a local file that holds the (cached) copy of the resource. This local file is then opened, and the

corresponding handle is returned to the caller.

If the file is being opened for modification, a dirty bit of the VNodeFile is set.

A VNodeFile corresponding to the filename-URL might have already existed in a VNode cache. In that case,

the GET request will include an If-modified-since: yyyyy header, where yyyyy is the value of a

VNode::last_checked field in HTTP date format.

close cached-file-handle PUT filename-URL

Locate a VNode whose opened cache file has a handle equal to the cached-file-handle.

If the filename-URL has been opened for writing (that is, VNodeFile::dirty is set), upload the contents of

the cache file to the HTTPFS server. The VNode and its cached content are not immediately disposed of, but rather

stay around until "garbage-collected".

read cached-file-handle buffer count None

Perform a regular read(2) operation on the cached-file-handle.

write cached-file-handle buffer count None

Perform a regular write(2) operation on the cached-file-handle.

lseek cached-file-handle offset whence None

Perform a regular lseek(2) operation on the cached-file-handle.

stat filename-URL struct-stat-buffer HEAD filename-URL

Pragma: httpfs="stat"

First we check to see if there is a valid VNode for the given filename-URL (possibly with a '/' appended, in case

it turns out to be a directory). If such a VNode is found, its cached status information is immediately returned and a

HTTPFS server is not bothered. Otherwise, we issue the HEAD request and fill in the struct-stat-buffer

from the status-info
*
 in a Etag: response header.

lstat filename-URL struct-stat-buffer HEAD filename-URL

Pragma: httpfs="lstat"

Similar to the stat API call above.

readlink filename-URL filename-buffer HEAD file-name

Pragma: httpfs="readlink"

Fill in the filename-buffer with the response from the server.

opendir dirname-URL GET dirname-URL

If-modified-since: yyyyy

A new VNodeDir is created for the dirname-URL, unless the corresponding valid VNodeDir happens to exist

in the VNode cache. In the latter case, the GET request will carry the If-modified-since: yyyyy header

with yyyyy being the value of a VNode::last_checked field.

The server returns the listing of the directory: for each directory entry (including . and ..) the server writes a line

name/status-info
*

This listing is written as it is into a cache file of the VNodeDir. The VHandle of this VNodeDir is returned as

the result of the opendir() call.

readdir VNodeDir-handle None

The dir-handle is supposed to be a VHandle of a VNodeDir. This VNode is located, its cache file is parsed

and sent to a MCFS client (as a sequence of name, stat-for-the-name pairs).

closedir VNodeDir-handle None

The VNodeDir-handle is supposed to be a VHandle of a VNodeDir, which is thus closed.

rmdir dirname-URL DELETE dirname-URL

mkdir dirname-URL mode PUT dirname-URL

unlink filename-URL DELETE filename-URL

*
 status-info, the status information for a remote resource, is a string of 11 numbers separated by a single

space: "dev ino mode nlink uid gid size atime mtime ctime blocks". All numbers are in

decimal notation, except mode which is octal. The meaning of the numbers is the same as that of the corresponding

fields in a stat structure. See also a stat entry in Perl documentation. The status-info is a "hard validator"

of a resource – resource's unique identification. Indeed, should the file be altered, at least its modification timestamp

will change. The status-info is delivered in a ETag: response header, a field designated by the HTTP standard

to carry (unique) resource identifiers.

