Macros that Compose:
Systematic Macro

Programming

Oleg Kiselyov
FNMOC
oleg@okmij.org

Generative Programming and Component

Engineering: ACM SIGPLAN/SIGSOFT

Conference, GPCE 2002. Pittsburgh, PA,
USA, October 6-8, 2002.

http://pobox.com/"oleg/ftp/Scheme/macros.html

Macros that Compose: Systematic Macro
Programming

What are macros?

e Syntactic extensions

e Abstract or concrete syntax transformers

e Head-first (normal order) re-writing sys-
tems

This talk is about macros or pre-processors. These are
facilities to add a new kind of, well, syntax to the core
language. We will be talking about systems that recur-
sively re-write a phrase in an extended language into a
sentence in the core language. S0, macro-systems are
in general source-to-source transformers, of either the
concrete or the tokenized source.

Macro-phrases, or macro-applications, are typically in-
troduced by a head word — a keyword. When a macro
processor encounters a keyword, it invokes the corre-
sponding transformer, passes to it the macro-phrase as
it is, and re-processes the result. Because the rest of a
macro phrase is interpreted solely by a syntactic trans-
former, the phrase may contain constructs that appear
invalid or ill-formed in the core language. This fact
makes macros powerful tools for the extension of lan-
guage syntax.

1-1

Examples of macro systems

##tdefine

Lisp macros

PL/1 macros

Scheme syntax-rewriting-rules

Camlp4 quotations

MacroML

Tcl

/bin/sh

Lisp macros are probably the most well-known macro
facility. Scheme has a high-level tokenized source trans-
former guided by so-called syntax-rules. MacroML ex-
tension for ML and Camlp4 pre-processor for OCaml
are examples of macro facilities for modern functional
languages.

Most of the examples in this talk will be using syntax-
rules macros of Scheme. We chose Scheme macros
because they are well-designed, powerful and mature.
Besides, we have to write examples in some language.
Most of the results and conclusions of the paper will
apply to several of these systems as well.

2-1

Why Macros?

Conditional compilation and controlled in-
lining

Control: affecting the evaluation order

Binding

Domain-specific, little languages

What makes macros worth talking about? We use
macros for conditional compilation and inlining — not
only in C but in Scheme, OCaml and Haskell, too. We
write macros for convenient switching, looping, and de-
laying forms — basically to add a degree of laziness to
a strict language. Macros can introduce custom bind-
ing forms, and, in the best application, can implement
domain-specific notations.

3-1

Can higher-order functions supplant macros?

e Control macros: Yes

e Macros for second-class objects: No

Even Haskell needs macros:
e EXpression substitution
e Adding whole function definitions
e Adding types or portions of types
e Adding export/import list entries

e [oken-pasting for building identifier names

[Keith Wansbrough (1999): Macros and Preprocessing
in Haskell.]

One sometimes hears that higher-order functions (and
related non-strictness) make macros unnecessary. For
example, In Haskell, if is a regular function. However,
every language with more syntax than lambda-calculus
has phrases that are not expressions. Examples of such
second-class forms are: type, module, fixity and other
declarations; binding forms; statements. Only macros
can expand into a second-class object. The result of a
function is limited to an expression or a value.

Do we really want to manipulate second-order forms?
The developers of a Glasgow Haskell Compiler seem
to think so. The compiler is the biggest Haskell
application. It includes a notable amount of CPP
Macros. The paper "Keith Wansbrough (1999).
Macros and Preprocessing in Haskell. Unpublished.
http://www.cl.cam.ac.uk/ kw217 /research/misc/hspp-
hw99.ps.gz” documents all such uses, and argues that
macros should be included into language standards.

4-1

The best case for macros

A program configurator

(SSAX:make-parser
NEW-LEVEL-SEED
(lambda (elem-gi attributes namespaces
expected-content seed)
()
UNDECL-ROOT
(lambda (elem-gi seed)

(values #f ’() namespaces seed))

The best application of macros is adding a domain-
specific notation to the language, overlaying a little
language on the top of a general-purpose one. John
Qusterhout and Paul Graham have made compelling ar-
guments for such embeddings. A compelling example
of macros — close to the topic of this conference — is
a program configurator. I mean a tool to assemble an
application out of components. On this slide is an ex-
ample of instantiating a fast and extensive XML parser
in Scheme {SSAX}. The parser is actually a toolkit of
parsers and lexers of various sorts, to be combined by
the user. This macro {SSAX:make-parser} assembles
the parser given particular user callbacks. The macro
integrates the callbacks, so the resulting parser is fast.

I should note that some of the call-back interfaces are
overlapping. Therefore, regular module facilities won't
suffice. The make-parser macro can know which of the
overlapping interfaces is being instantiated, and there-
fore, can configure the fast or a slow path appropriately.

BSD kernels, Apache modules show more examples of
macros as configuration tools.

5-1

Dangers of macros

The expansion code may be mis-formed

The expansion code may be mis-typed
—MacroML

Subtle semantic errors
—CPP.info: Macro Pitfalls

Non-obvious interaction of modules and
Macros
—Matthew Flatt’s paper @ ICFPO0O2

Hygiene
—Scheme 2002 workshop

Macros are too complex

—

Macros however pose well-known dangers. A carelessly
written macro may expand in the code that cannot be
typed or even parsed. This is especially easy to do in C.
Macros may bind "temporary” variables whose names
clash with the names of user variables. The latter prob-
lem is called the lack of hygiene. The references {on
the slide} indicate that these problem have been or are
being addressed. There have been several talks at this
PLI specifically about developing macro systems that
assuredly behave.

Finally, macros are just too complex. They are difficult
to develop and test, which leads to many errors. It takes
a degree in macrology to write even a moderately com-
plex macro — and it takes even more advanced degree
to understand the macro. That is the problem we are
addressing in this talk.

6-1

Macro (Mis)Composition

#ifdef
#define MAXLIMIT 10
#ifdef
#define MAXLIMIT 20

assert (i<MAXLIMIT);

assertion "i<MAXLIMIT" failed:

file "a.c", line 7

The reason macros are so difficult to comprehend is
that they in general, do not compose. The problem is
quite frequent — so frequent that we might even got
used to it. For example, let's take a macro assert(),
which everybody knows and uses. The macro evaluates
its argument expression, and if the result is FALSE, it
prints the message, quoting the expression that caused
the failure.Let us consider this assert statement, where
MAXLIMIT is as nullary macro that expands into a in-
teger, depending on a blood-pressure-raising tangle of
conditions. Everybody have seen such a mess. It's
very difficult to know what the MAXLIMIT is unless
we just print it out. Should this assertion fail, we see
the the following message. It indicates that i is above
MAXLIMIT. It would be helpful to know what was the
value of MAXLIMIT at this point — but the message
does not say that. Indeed, we see the name of the macro
MAXLIMIT rather than the result of its expansion. So,
the complete composition of two macros, ASSERT and
MAXLIMIT, essentially failed.

7-1

Overview

Macros: the good, the bad, and the mis-
composition

CPS macros always compose!

Macro-lambda

Practical methodology of building complex
macros systematically

— Example of writing a macro easily

— Automatic translation:
Scheme code — syntax-rule macro

So far, we have seen the good, the bad, and the miscom-
position. The latter is quite disconcerting, because it
prevents us from building complex macros by combining
simpler ones. Miscomposition breaks the fundamental
Software Engineering principle of modularity. Because
this is a very important property to lose, we will elabo-
rate on it further.

We will see however that macros written in a
continuation-passing style (CPS) always compose.
Making CPS macros practical still requires an encod-
ing for macro-continuations. We have found this miss-
ing piece, with an insight for anonymous macro-level
abstractions.

CPS macros with lambda-abstractions lead to a gen-
eral practical methodology of building macros system-
atically. Macro programming becomes no more complex
than regular programming. We present the methodol-
ogy and give an illustration of how to write a macro
easily. In the specific case of Scheme macros, we give
a stronger result: developing syntax-rules macros by an
automated translation from the corresponding Scheme
procedures. We can literally write macros just as we
write regular procedures.

8-1

Mis-composition - 1

Native let

(let ((i (+14))) (+1i 37))

var init body

Infix let

(define-syntax lets
(syntax-rules (<- in)

((lets var <- init in body)

(let ((var init)) body)
)))

(lets i <- (+ 1 4)
in (+ i 37))

As I said before, we will be using Scheme and its high-
level macro system for our examples. Most of the results
will apply to other macro systems.

As many well-desighed languages, Scheme has a binding
construct named ’'let’. In its simplest form, it looks
as follows. The value of the let form is the value of
the body in an environment amended by the binding of
variable var to the value of the initializing expression
init.

The Scheme USENET newsgroup bears witness of
many people who have seen the light and come to
Scheme. Let us imagine one such person, who has not
yet fully recovered from the infix addiction, and wishes
for a let form that he is used to in the other language.
He can easily extend Scheme with such an infix let form.

The macro facility of Scheme can be called re-writing-
by-example. The programmer specifies examples of the
code before and after the re-writing. In our example,
we wish to rewrite this form into that. Therefore, this
expression expands into that and predictably gives the
answer to everything.

BTW, this is the case of using a macro to introduce
a new, more palatable, domain-specific, notation. The
example is intentionally simple. In the pattern, var, init
and the body are pattern variables, and the arrow and
the word in are literals. That’s why they are mentioned
here {syntax-rules (<- in)}

9-1

Mis-composition - 2

Functional composition

f(id(x),y,z) = £(x,y,2)

The identity macro

(define-syntax id
(syntax-rules ()

((id x) x)))

10

The simplest case of composition is the composition
with the identity function, like here and the same for
the other arguments. We can easily write an identity
macro, a macro that expands into its argument {point

to the 'id’' syntax rule}. Let us see if the same equality
holds for macros.

10-1

Mis-composition - 3

(lets 1 <- (id (+ 1 4)) in (+ 1 37))
==> 42

(lets i <- (+ 1 4) in (d (+ i 37)))
. ==> 49

(lets (id i) <- (+ 1 4) in (+ i 37))

*** ERROR:bigloo:rename-vars: Illegal
variable — (id i)

(lets i (id <-) (+ 1 4)
in (+ i 37)))

*** ERROR:bigloo:expand-syntax: Use of
macro does not match definition — ((lets
i (id <-) (+ 1 4) in (+ i 37)))

11

[Cover the slide]

Let us first wrap the initialization expression into the
id macro. Well, the composition works, the evaluation
result is unchanged. We now wrap the body — again,
it composes. Now we try the composition on the first
argument. Oops, what happened here {third case}?
And here {fourth case on the slide}?

This is easy to explain if we see the expansion of these
Macros

11-1

Mis-composition - 4

(lets i <- (id (+ 1 4)) in (+ i 37))
—(let (1 (id(4+14)))) (+1i 37))

(lets i <= (+ 1 4) in (id (+ i 37)))
S(let (A (+ 1 4))) (id (i 37))

(lets (id i) <- (+ 1 4) in (+ i 37))
—(let (((idi) ((+14))) (+i 37))

(lets i (id <-) (+ 1 4)
in (+ i 37)))
ct.
(syntax-rules (<- in)

((lets var <- init in body)

12

In this case, the argument of the macro lets ends up in
a position of an initializing expression of the native let
form. A macro expander is designed to systematically
re-write expressions into their normal forms. There-
fore, after lets is expanded, the macro expander checks
the resulting expressions for macro phrases. Here {the
first case}, it finds one, and expands it. Here {the
third case}, however the argument of lets, (id i), ap-
pears where a variable is expected. The macro-expander
knows that let is a special form, and some positions are
not for expressions. Therefore (id i) just stays here.
When the core language compiler gets to that expres-
sion, it finds something other than an identifier in the
place of a variable to bind. The compiler complains.

We say that the position of a binding variable is a special
class position in that phrases in this position are not
parsed as expressions, and therefore, are not subject to
macro-expansion. A phrase under a quote is another
example of a special position phrase.

Here, in the fourth example, the situation is different.
This argument is matched against a literal, an arrow
symbol — and here the match certainly fails. A macro-
argument to be deconstructed inside the macro also oc-
cupies a special class position.

Macros that place their arguments in special class po-
sitions constitute the most compelling class of macros.
These macros build bindings, type and module decla-
rations and other second-class phrases. Higher-order

12-1

functions cannot do that. Such macros are also non-
compositional.

In these two cases the problem could have been avoided
if the macro lets had "evaluated” {(or normalized, to
be precise)} its arguments before dealing with them fur-
ther. Syntax-rules macros however cannot invoke the
macro-expander recursively — or any other function, for
that matter. Doing so would have made efficient hy-
gienic macro-expansion too difficult or impossible.Unlike
a function, a head-first normal-order re-writing rule can
force evaluation of an expression only by returning it.
However, by doing so, the original rule loses the con-
trol, so to speak. If lets expands into the form (id i),
how would it get back the result of its expansion?

Why mis-composition matters

e Embedding a DSL requires sophisticated
Mmacros

e Divide-and-conquer helps

e Higher-order combinators help

Without composition, macros tend to be
monolithic, highly recursive, ad hoc, and re-
quiring a revelation to write, and the equal
revelation to understand

13

{This talk however deals with a software-engineering as-
pect of writing macros.} Embedding a domain-specific
notation often requires sophisticated macros. A com-
plex artifact is easier to develop if it can be composed of
smaller, separately designed and tested parts. If we do
not have composition, the familiar idioms of a function
call — let alone higher-order combinators such as map
or fold — do not easily apply. Therefore, macros tend to
be monolithic, highly recursive, ad hoc, and requiring a
revelation to write, and the equal revelation to under-
stand. Many examples of syntax-rules demonstrate that
we have to resort to hacks even in simple cases.

13-1

Macro-lambda and Macro-apply

(??!lambda (bound-var ...)

(body (77! bound-var) ...))

(?77'apply (?7!lambda (bound-var ...) body)
arg ...)

body[arg/(??! bound-var) ...]

14

We shall now show how to construct macros that are
always compositional — even if they place their argu-
ments in special positions. In some circumstances, we
can compose with 'legacy’ macros written without fol-
lowing our methodology. As a side effect, the technique
makes syntax-rule macros functional, restores the mod-
ularity principle, and even makes possible higher-order
combinators.

The first, novel ingredient to our macro programming
technique is a notation for a first-class parameterized
future macro-expansion action, or macro-lambda for
short. Here bound-var is a variable, body is an expression
that may contain these forms {(??! bound-var)}, and
?7!lambda is just a symbol. Although the ??!lambda form
may look like a macro-application, it is not. Our macro-
level abstractions are not macros themselves, but they
are first class.

The 7?7!1lambda-form is interpreted by a macro ?7!apply.
To be more precise, we specify that the following phrase
expands into the body, with all non-shadowed instances
of (77! bound-var) replaced by arg. In Scheme, ques-
tion and exclamation marks are considered ordinary
characters. Hence 77!lambda, ??!apply and 77! are or-
dinary symbols — albeit oddly looking, on purpose.

An implementation of 7?7lapply that satisfies this spec-
ification is in the paper. Conceptually, it is trivial: a
mere substitutor.

14-1

Macro Composition

A CPS macro

(define-syntax cps-macro
(syntax-rules ()
((_ args K) (?7!'apply K result))

((_ args k) (cps-macro continuation))))

How foo can invoke (bar bar-args)

(define-syntax foo
(syntax-rules ()
((_ foo-args k)
(bar bar-args
(?7!lambda (result)
(continuation ...
(77! result) ... k))))))

15

Continuation-passing-style (CPS) macros first intro-
duced by Friedman and Hilsdale are the second com-
ponent of our methodology. Our CPS macros must re-
ceive a continuation argument or arguments, and must
expand into an application of 77!apply. Alternatively,
a CPS macro may expand into an application of an-
other CPS macro, whose continuation argument is typ-
ically encoded with a macro-lambda. In particular, if a
macro foo wants to 'invoke' a macro bar on an argu-
ment bar-args, foo should expand into this form {(bar
args (??!lambda (res) continuation))}. Here the con-
tinuation argument of bar includes (??! result) forms
and thus encodes what needs to be done with the bar’s
result.

15-1

CPS macros

(define-syntax id-cps
(syntax-rules ()
(. x k)
(??'apply k x))))

(id-cps i
(?7!lambda (var)
(id-cps <-
(?7!1lambda (arrow)
(id-cps (+ 1 4)
(??11lambda (init)
(lets (7??! var) (??! arrow)

(??! init) in (+ 1 37))))))))

16

This technique easily solves the problem of composing
macros id and lets. We will first re-write the macro
id in CPS. Compared to the macro id we saw earlier,
id-cps receives a continuation argument, and expands
into a code that passes the argument x to that contin-
uation. The composition of id-cps with lets will use
a macro-level abstraction to encode the continuation.
This macro expands without errors, to the same let
form, and evaluates correctly to the universal answer.
We can insert forms in regular positions {(?7! init)},
and in special positions, as in here {(??! var)} and here
{(?7?! arrow)}.

Moreover, we can show that id-cps, in contrast to the
macro id, always composes with any macro. The paper
makes a brief formal argument. We suitably abstract
the composition problem to that in lambda-calculus.
Macro-expansion translates to a call-by-name evalua-
tion. The paper proves that CPS terms always com-
pose, both in call-by-name and call-by-value calculi.

16-1

More complex example of a macro
composition

(define-syntax 7plc-fact
(syntax-rules ()
(C co k)
(?plc-zero? co
(??7!1lambda (c) (?plc-succ (77! c) k))
(?7!1lambda (c) ; on c being > O
(?plc-pred (77! c) ; the predecessor
(?7!lambda (c-1)
(?plc-fact (77! c-1)
(?7!1lambda (c-1-fact)
(?plc-mul (77! c)
(??7! c-1-fact)
k))))))))))

17

We show a more elaborate example of developing com-
plex macros by macro composition. It is a compile-time
implementation of a factorial over Peano-Church nu-
merals. No computer science paper is complete without
working out the factorial. This fragment is quoted here
to illustrate modularity: the factorial macro is built by
composition of separately defined and tested arithmetic
(?plc-pred, 7plc-mul) and comparison macros. Selec-
tion forms such as 7plc-zero? take several continuation
arguments but continue only one.

17-1

Systematic development of a complex DSL
macro

delete-assoc, a part of the SSAX:make-parser

delete—-assoc deletes an association with the
name tag from alist, a list of (name . value)
pairs. We return the list of the remaining as-
sociations. tag not found => error

(define (delete-assoc alist tag)

(let loop ((alist alist) (scanned ’()))
(cond

((null? alist)
(error "Unknown callback-tag: " tag))
((eq? tag (caar alist))

(append scanned (cdr alist)))
(else

(loop (cdr alist)

(cons (car alist) scanned))))))

18

The previous macro looked rather similar to a regu-
lar Scheme procedure written in CPS. This observation
raises a question if syntax-rule macros can be written
systematically — by translating from the corresponding
Scheme functions. The answer is Yes. The paper
gives a detailed example, incidentally, with a higher-
order combinator map. We will talk about a differ-
ent example, taken from the XML parser configurator
macro. To remind, the configurator macro takes a list
of call-back procedures. Each procedure is preceded by
an identifying tag. The configurator macro needs to
merge the user-specified list with the default list. The
default list is an associative list, a list of tag-value pairs.
One part of the merge operation is removing an associ-
ation from the list. This operation can be described by
the following procedure. It is easy to see what is going
on: a mere list traversal. We check if the list is empty
and if the association at the head of the list has the tag
of interest. Otherwise, we check the next association.
The slide shows the simplest form of this procedure. It
IS a regular procedure, which is easy to design and test.

18-1

delete-assoc-cps

(define (delete-assoc-cps alist-orig tag ktop)
(letrec ((loop
(lambda (alist scanned k)
(ifnull? alist
(lambda () (error "Unknown callback-tag
(lambda () (caar-cps alist
(lambda (elem)
(ifeq? tag elem (lambda ()
(cdr-cps alist (lambda (rest)
(append-cps scanned rest
k))))
(lambda () (car-cps alist
(lambda (head) (cdr-cps alist
(lambda (tail)
(cons-cps head scanned
(lambda (new-scanned)
(loop tail
new-scanned k)))

))))))))))))
(loop alist-orig ’() ktop)))

19

The first step is re-writing the procedure in the
continuation-passing-style. Yes, it's not pretty: CPS
code rarely is. {We assume CPS versions of basic prim-
itives such as car and cdr, and switching primitives such
as ifnull? and ifeq?. The latter takes two argument and
two continuations. If the arguments are equivalent, the
procedure continues to the first continuation. Other-
wise, the second, on-false, continuation is followed.}

This code is more convoluted. It's harder to see what's
going on. This is still a regular Scheme procedure, which
is relatively easy to test. {The other consolation is that
a transformation from the previous procedure is me-
chanical.}

19-1

7delete-assoc

(define-syntax 7delete-assoc
(syntax-rules () ((_ alist-orig tag ktop)
(letrec-syntax
((loop (syntax-rules () ((_ alist scanned k)
(?7ifnull? alist
(?7?7!1lambda () (error "Unknown callback-t
(??7!1lambda () ; alist is non-empty
(?7caar alist (?7!lambda (elem)
(7ifeq? tag (77! elem)
(?7!1lambda ()
(?7cdr alist (?77!lambda (rest)
(?append scanned (77! rest)
k))))
(?7?!1lambda () (?car alist
(??7!1lambda (head) (7cdr alist
(?7!1lambda (tail)
(?7cons (77! head) scanned
(?7?7!1lambda (new-scanned)
(loop (77! tail)
(77! new-scanned)
k))))))IIIIIIIII))
(loop alist-orig () ktop)))))

20

On this slide is the result of translating the CPS proce-
dure into a CPS macro. To distinguish CPS macros, we
begin their names with the question mark. It is just a
notational convention. The question mark has no syn-
tactic significance. As we see the macro code looks
almost the same as the CPS procedural code, modulo
question marks and occasional syntax-rules. This is the
only sign we are dealing with a macro here.

Normally, syntax-rule pattern-based macros look noth-
ing like regular Scheme procedures.

20-1

Using and beautifying the CPS macro

(?delete-assoc
((NEW-LEVEL-SEED . nls-proc)
(FINISH-ELEMENT . fe-proc)
(UNDECL-ROOT . ur-proc))
FINISH-ELEMENT
(??!lambda (result) (display ’(?7! result))))
; ==> ((NEW-LEVEL-SEED . nls-proc)
(UNDECL-ROOT . ur-proc))

(define-syntax delete-assoc
(syntax-rules ()
((_ alist-orig tag)
(?7delete-assoc alist-orig tag
(?7!lambda (result) (77! result))))))

21

Here is an example of using the designed macro, to
delete an association with this tag from this list. It
works. It is a modular macro and can be freely com-
posed with other CPS macros. It is a syntax-rule, hence,
a hygienic macro.

It is, however, ungainly, because of the continuation ar-
gument here {(??!lambda (result)...)}. The ease of use
IS an important issue for macros, since making the code
look pretty is the principal reason for their existence.
Therefore, as the last step we wrap ?delete-assoc into
a non-CPS macro

The generic nature of the wrapper is noteworthy. We
merely partially apply the macro to an identity continu-
ation.

Finally, we saw that transformations steps from a pro-
cedure to a macro are rather regular. Can we do them
automatically? The answer is yes.

21-1

Scheme -to- Syntax-rule compiler

(define-syntax 7delete-assoc
(syntax-rules () ((_ _7alist 7tag 7kgl029)
(letrec-syntax ((?loop (syntax-rules ()
((_ _7alistgl031 _?scannedgl032 _7kg1030)
(?ifnull? 7alistgl031
(??7!1lambda (g1033)
(?7lapply 7kgl030 (error tag)))
(?7!1lambda (g1034) (7car _7alistgl031
(?7!1lambda (g1043) (?car (77! g1043)
(??7!'lambda (g1042)
(7eq? _?tag (?7! gl1042)
(??!1lambda (g1035)
(?iftrue? (77! g1035)
(?7!lambda (g1036) ...)
(??7!1lambda (g1038)
(?7cdr 7alistgl031
(??!1lambda (g1039)
(?car 7alistgl031
(?7!1lambda (g1041)
+2)))))))))))III)))
(?7loop 7alist () _7kgl1029)))))

22

delete-assoc procedure: the translation source

(define (delete-assoc alist tag)
(let loop ((alist alist) (scanned ’()))
(cond
((null? alist)
(error "Unknown callback-tag: " tag))
((eq? tag (caar alist))
(append scanned (cdr alist)))
(else
(loop (cdr alist)

(cons (car alist) scanned))))))

23

That is exactly what Scheme-to-syntax-rules compiler
does. The compiler does both stages — CPS and macro
transforms — in one pass. The paper has a link to the
full source code of the compiler.

This slide {(define-syntax ?delete-assoc...)} contains a
slightly abbreviated code, produced by the compiler from
the original simple procedure, here {delete-assoc}. The
code is rather close to the one we built by hand. I agree,
otherwise the code is a mess. But it doesn’t matter! We
don’t have to look at the code. We don't have to know
how it works. If the original procedure was correct,
the macro will be correct too, and will work without
fail. This is the best part of the translation. We don't
need a degree in macrology any more to write sophis-
ticated macros. We write pure functional procedures
that transform S-expressions in the desired way. We test
them using standard Scheme facilities. We compile the
procedures into a macro, and it works. Furthermore, be-
cause the resulting macros are compositional, we enjoy
a separate compilation. We can build libraries of trans-
formation procedures and the corresponding macros.

23-1

Conclusions

e Special-position macros do not compose,
and it is bad
—cannot divide-and-conquer

e Macro programming can be made system-
atic and applicative: CPS + macro-lambda

e Syntax-rules as object code

24

We have demonstrated that macro programming is
in general non-functional. The fundamental engineering
principle of modular design therefore does not generally
apply to macros.

We have presented a methodology that makes macro
programming applicative and systematic. The method-
ology is centered on writing macros in continuation-
passing style and encoding continuations in macro-
lambda abstractions. Therefore, complex macros can
be constructed by combining separately developed and
tested components, by composition and higher-order
operators.

Scheme syntax-rule macros specifically admit a stronger
result: syntax-rule macros can be systematically devel-
oped as regular, tail-recursive Scheme procedures. Fur-
thermore, it is possible to automatically translate from
Scheme procedures to hygienic, composable macros.
Syntax-rules become object, assembler code.

The approach of this talk makes programming of
Scheme macros and of other related head-first re-writing
systems more like a craft than a witchcraft.

24-1

