
How to Write Seemingly Unhygienic and
Referentially Opaque Macros with

Syntax-rules

• Overview

• Petrofsky Extraction
extracting variables from arguments of a macro

– weakly unhygienic syntax-rules

• Macro, redefine thyself!

• Infected λ

• Discussion

– Is it legal?

– What is hygiene, really?

– More macros are possible

1

This talk will make several assertions that might be hard
to believe. I will say the most incredible statement right
upfront however. This whole subject of writing seem-
ingly referentially opaque macros with syntax rules has
been actually inspired by a practical application. Yes,
indeed. I’d like to talk about the history for a moment,
because it gives the overview of the paper.

1-1

How it all began

Antti Karttunen ”Dirty macros with define-

syntax?”

comp.lang.scheme, Mar 6, 2002.

(define-convform (NUKE CRS (I ifile) (O ofile))

(run (tr -d "\\015") (< ,ifile) (> ,ofile)))

(let ((IO-ENV ’((file1 "/tmp/a"))))

(NUKE CRS (I file1) (O file2))

(PRINT (I file2)))

Can the IO environment for file labels be lexi-

cal?

Can you do it without global variables?

2

It all started with an article Antti Karttunen posted
on the newsgroup comp.lang.scheme on Mar 6, 2002.
{The title of the article was ”Dirty macros with define-
syntax?”.} The subject is a domain-specific language for
assembling ”pipelines” of system commands in SCSH.
Unlike SCSH own pipelines, the new pipelines could al-
low more than one input or output, allow single-stepping
for debugging, and should use temporary files to avoid
losing the work should a step fail. In particular, to
avoid passing many parameters to a step macro, Antti
wanted to refer to the parameters, IO-ENV, implicitly.
He needed a macro whose expansion could refer to lexi-
cally bound variables [here]. Because SCSH (Scheme48,
actually) encourages R5RS macros, Antti was asking
how to implement his constructions with syntax-rules.
Several people, including Al Petrofsky, posted replies
saying that R5RS macros are referentially transparent,
so this cannot be done. I posted an implementation
of define-convform and side-stepped this issue by using
the global IO-ENV. On March 20, Antti replied to me
saying that it was all nice but he wanted to avoid too
many globals in his code. Specifically, he wanted {this:
(let ((IO-ENV...)))}.

2-1

Hygienic macros cannot expand in referentially-opaque

code: if a macro expansion introduces a free identifier,

the identifier refers to the binding occurrence which

was in effect when the macro was defined rather than

when the macro was expanded. E.g.

(define foo 1)

(define-syntax mfoo

(syntax-rules ()

((mfoo) foo)))

(let ((foo 2)) (mfoo)) ;==> 1

If foo was not defined when macro mfoo was introduced,

(mfoo) will always lead to an ”unbound identifier” er-

ror.

Still, there is a way to get around.

3

[hide the last line]

On Friday morning Mar 22 I started to type my reply
that I agree with Al Petrofsky: you can’t write a R5RS
macro that allows an inserted identifier to be captured
by a local binding. I gave an example: {Hygienic macros
cannot expand in referentially-opaque code:} if a macro
expansion introduces a free identifier [here], the identi-
fier refers to the binding occurrence which was in effect
when the macro was defined [here] rather than when
the macro was expanded [as in here].

You can’t defy gravity. As I was typing that, it struck
me: And why not? What if I use my own binding form,
mylet rather than the regular let? That mylet will ex-
pand into the regular let, and redefine the macro in
question right after that, at this spot. [show on the
figure, how macro mylet would expand into a let
with the definition of mfoo within its scope] The
identifier foo in the macro-expansion would appear to
be captured by the local, mylet binding?

That silly idea made me spend several hours trying it
out. Eventually, I got such mylet macro to work. Then
I realized it had a flaw. You cannot nest the mylet bind-
ings. It was around 3pm, I decided I wasted enough time
and should cut losses. I had a lunch, read something,
and started to wrap up my message to say that what
Antti wants cannot be done. I had a trick, but it doesn’t
work. As I was typing that I remembered Al Petrofsky
posted an article half a year earlier with a syntax-rule

3-1

implementation of a loop-until-exit form. Al mentioned
he also had a problem with nesting, and he solved it. I
wondered if his solution can work for mylet too. So I
checked Al’s article from Google, read it, started to im-
plement what I’ve understood. By 11 pm, it seemed to
work out, So I finished my message to Antti by typing:

[reveal the phrase] That phrase was followed by a

couple of pages of dense code with denser comments,

and a few examples,

(mylet ((foo 3)) (mylet ((foo 4))

(mylet ((foo 5)) (list foo (mfoo)))))

; ==> (5 5)

(mfoo) captures the binding of foo from the lexically

closest environment.

(mylet ((foo 3))

(let ((thunk (lambda () (mfoo))))

(mylet ((foo 4)) (list foo (mfoo) (thunk)))))

;==> (4 4 3)

BTW, it’s even possible to redefine let and replace it

with our mylet, so you can write

(let ((foo 2)) (let ((foo 3))

(let ((foo 4)) (list (mfoo) foo))))

and get the same apparently non-hygienic results. It’s

just the matter of defining our macros at a high-enough

level...

4

As you see, (mfoo) captures the binding of foo from the
lexically closest environment: here and here and here. I
used Bigloo to run all the examples.

BTW, it’s even possible to redefine let and replace it
with our mylet, so you can write (let ...) and get the
same apparently non-hygienic results. It’s just the mat-
ter of defining our macros at a high-enough level...

As I was falling asleep later that night I realized that I
needed to subvert only the lambda form. The let forms
will get in line.

On Sunday Antti replied asking if I mind if he brings the
discussion back to public. I guess you see now who to
blame for this.

4-1

How to Write Seemingly Unhygienic and
Referentially Opaque Macros with

Syntax-rules

• Overview

• Petrofsky Extraction
extracting variables from arguments of a macro

– weakly unhygienic syntax-rules

• Macro, redefine thyself!

• Infected λ

• Discussion

– Is it legal?

– What is hygiene, really?

– More macros are possible

5

Well, this basically was all the talk. In the remaining
time, I will repeat it again with more details. We will
thoroughly discuss Petrofsky extraction, because it can
be used to write weakly unhygienic syntax-rules, because
we will use it to write seemingly referentially opaque
macros, and because it’s so cool. We will show that
a macro that introduces a binding and then redefines
itself and other macros leads to the overall referential
opaqueness. We will get a lambda to do such redefini-
tions, and then make the let binding forms to use the
subverted lambda.

The end result demonstrates a syntax-rule macro that
looks exactly like a careless, referentially opaque Lisp-
style macro. The final section discusses what it all
means: for macro writers, for macro users, and for pro-
gramming language researchers.

But first a word about terminology.

5-1

Hygiene

Avoiding inadvertent captures of free variables

through systematic renaming

Narrow sense: HC/ME

”Generated identifiers that become binding

instances in the completely expanded program

must only bind variables that are generated at

the same transcription step” [KFFD86]

(define-syntax mbi

(syntax-rules ()

((body) (let ((i 10)) body))))

(let ((i 1)) (mbi (* 1 i)))

; =/=> (let ((i 1)) (let ((i 10)) (* 1 i)))

; ==> (let ((i~2 1))

(let ((i~5 10)) (* 1 i~2)))

6

A macro system is called hygienic, in the general sense,
if it avoids inadvertent captures of free variables through
systematic renaming. The free variables in question
can be either generated variables, or variables present
in macro invocations (i.e., user variables). Here, this i
is a user variable, it came from an argument of a macro.
This i was a free variable in the macro transformer it-
self. It’s called a generated identifier. A narrowly de-
fined hygiene is avoiding the capture of user variables
by generated bindings. The precise definition, a hygiene
condition for macro expansions (HC/ME), is given in
the paper whose two authors are in the audience. {We
borrowed all the terminology from that paper, which is
most precise. HC/ME says: ’Generated identifiers that
become binding instances in the completely expanded
program must only bind variables that are generated at
the same transcription step.’}
If we naively expand (mbi (* 1 i)) – match the expres-
sion with the pattern, substitute the matched body in
the template – we will get this. This i is a generated
identifier, which is also a generated binding. This i is a
non-generated identifier reference. Here it is captured
by the generated binding. But HC/ME prohibits this.
Therefore, expansion occurs as [that] and gives the
result 1. The identifier i~2 is different from i~5: we will
call them identifiers of different colors.

We have talked about generated bindings capturing user
identifiers. The opposite case is user binding capturing
generated identifiers, which is called referential opaque-
ness. We saw the example of that earlier.

6-1

Petrofsky extraction: Breaking the weak
hygiene

Goal:

(mbi 10 (* 1 i)) ==> (let ((i 10)) (* 1 i))

Does not work:

(define-syntax mbi

(syntax-rules ()

((val body) (let ((i val)) body))))

(mbi 10 (* 1 i)) ;==> (let ((i~5 10)) (* 1 i))

Does work:

(define-syntax mbi-i

(syntax-rules ()

((i val body) (let ((i val)) body))))

(mbi-i i 10 (* 1 i)) ;==> (let ((i 10)) (* 1 i))

7

As we said earlier, Petrofsky extraction is what made
our trick possible. It is a very useful technique and
deserves careful explanation. I will now describe how I
understand and implement it. I urge you to read the
original articles by Al Petrofsky.

Our goal here is to break a weak hygiene. We want to
write such a macro mbi so that this expression expands
into that expression, with let-binding capturing the vari-
able in the macro’s argument. We assume that i is not
defined at the global level – or defined before macro
mbi and not redefined since. This assumption is what
distinguishes a weak hygiene.

We already saw that this definition for mbi does not work
for us. The macro expands to this, and no capture oc-
curs, just as HC/ME says. However, if we explicitly pass
the variable to capture, it works. Indeed, here a non-
generated binding caught a non-generated reference –
which does not violate hygiene. So, we should think
how to convert this (the first) invocation into that (the
second) one. In here (second expression), this i and
that i are the same. So, to make the conversion, we
need to extract i from the argument of mbi, and we’re
done.

7-1

Petrofsky extraction: extract and extract*

extract SYMB BODY (K-HEAD K-IDL . K-ARGS)

==> (K-HEAD (extr-id . K-IDL) . K-ARGS)

(define-syntax extract (syntax-rules ()

((symb body cont)

(letrec-syntax

((tr

(syntax-rules (symb)

((x symb tail

(cont-head symb-l . cont-args))

(cont-head (x . symb-l) . cont-args))

((d (x . y) tail cont)

(tr x x (y . tail) cont))

((d1 d2 ()

(cont-head symb-l . cont-args))

(cont-head (symb . symb-l) . cont-args))

((d1 d2 (x . y) cont)

(tr x x y cont)))))

(tr body body () cont)))))

8

Thus we come to the macro extract, which extracts a
colored identifier from a form BODY. To be more pre-
cise, we extract from the BODY an identifier that refers
to the same binding occurrence as SYMB. SYMB and
the extracted identifier may be of different colors, but
refer to the same binding occurrence. William Clinger’s
paper ’Macros that work’ explains how that may hap-
pen.

The third argument is a continuation of that shape. The
macro extract expands into the following, where this is
an extracted id.

Let us look into the macro. All the work is done by a
helper tr. Its first two arguments are always the same.
We use the second argument to match with the symbol.
If it matches {1st clause}, we take the first argument
and we’re done. We are satisfied with the first occur-
rence of the desired id.

if this {1st clause} didn’t match, we see if the form is a
pair. If so, we put the tail into the worklist and go check
the head. If the form is not a pair and the worklist is
empty {the third clause}, well, we found nothing and we
just return the original symbol as an ’extracted’ id. If
the worklist is not empty {4th clause}, we deal with it.

We will often be using extract*, which is similar but
extracts several identifiers. It takes a list of identifiers
here and expands into the same kind of form, with the
corresponding list of extracted identifiers here. All the
work is done by this macro, extract. extract* merely
does map in CPS.

8-1

Petrofsky extraction: mbi-dirty-v1 – the first

weakly unhygienic macro

(define-syntax mbi-dirty-v1

(syntax-rules ()

((val body)

(let-syntax

((cont

(syntax-rules ()

(((symb) val body)

(let ((symb val)) body)))))

(extract i body

(cont () val body))))))

(mbi-dirty-v1 10 (* 1 i))

;==> (let ((i~11 10)) (* 1 i~11))

9

This macro carries out our program of converting mbi

into mbi-i. We extract i from the body and bind it in

the let form. Indeed, it seems to work. The colors in

the expansion are right, the capturing occurs, and the

evaluation result is 10.

9-1

Petrofsky extraction: the flaw of mbi-dirty-v1

The macro mbi-dirty-v1 does not nest

(mbi-dirty-v1 10

(mbi-dirty-v1 20 (* 1 i)))

;==>

(let ((i~16 10))

(let ((i~17~25~28 20)) (* 1 i~16)))

10

But the macro has a flaw: it does not nest. This

expands into that and gives 10 rather than to 20

as we might have hoped. The outer invocation of

mbi-dirty-v1 creates a binding for i – which violates

the weak hygiene assumption. Petrofsky has shown how

to overcome this problem as well: we need to re-define

mbi-dirty-v1 in the scope of the new binding to i. Hence

we need a macro that re-defines itself in its own expan-

sion. We however face a problem: If the outer invo-

cation of mbi-dirty-v1 re-defines itself, this redefinition

has to capture the inner invocation of mbi-dirty-v1. We

already know how to do that, by extracting the colored

identifier mbi-dirty-v1 from the outer macro’s body. We

need thus to extract two identifiers: i and mbi-dirty-v1.

We arrive at the following code:

10-1

Petrofsky extraction: mbi-dirty-v2 – a weakly
unhygienic macro

(define-syntax mbi-dirty-v2 (syntax-rules ()

((val body)

(letrec-syntax

((doit (syntax-rules ()

(((myself-symb i-symb) val body)

(let ((i-symb val))

(let-syntax

((myself-symb

(syntax-rules ()

((val body)

(extract*

(myself-symb i-symb) body

(doit () val body))))))

body))))))

(extract* (mbi-dirty-v2 i) body

(doit () val body))))))

11

As we have said: we start by extracting our own id

from the body {see extract*} make the binding {see
let}, redefine oneself {let-syntax} and leave the body.

There is something here resembling a bootstrapping.

doit is the continuation from extract*

11-1

Petrofsky extraction: mbi-dirty-v2 – a weakly

unhygienic macro

(mbi-dirty-v2 10

(mbi-dirty-v2 20 (* 1 i)))

;===> 20

But:

(let ((i 1))

(mbi-dirty-v2 10 (* 1 i)))

; ==> (let ((i~26 10))

(let ((i~52 20)) (* 1 i~52)))

; ===> 1

12

Now, the nesting works. However, the macro
mbi-dirty-v2 is still only weakly unhygienic. If we eval-
uate (let ((i 1)) ...) [show] we obtain [show]
which evaluates to 1 rather than 10.

We will now turn to referential transparency – the topic
of this talk.

12-1

Apparent referential opacity with mylet

(mylet ((foo 2))

(mylet ((foo 3)) (list foo (mfoo))))

;==>

(let ((foo 2))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)

(let ((foo 3))

(define-syntax-mfoo-to-expand-into-foo)

(re-define-mylet-to-account-for-

redefined-foo-and-mfoo)

(list foo (mfoo))

))

;===> (3 3)

13

Earlier we showed a custom binding form mylet and what
it can do. (mfoo) is a macro that expands in the identifier
foo. We want this id be captured by the closest lexical
binding, like this one.

mylet is a custom binding form that helps us. We want
this whole expression to expand as follows: make a bind-
ing, redefine mfoo so that it would refer to this foo, re-
define oneself. Again, make a binding, redefine mfoo,
redefine oneself. Therefore, this mfoo will generate the
same foo reference as this one. The end result will be
this {(3 3)}. This process of defining and redefining
looks awfully close to what we have just seen in the
case of the weakly unhygienic macro. So, we can use
it, with a couple of adjustments, as shown in the paper.

Can we do better? Rather than introducing the custom
binding mylet, can we overload regular let forms to do
the same? Yes.

13-1

Implementation of mylet

(define-syntax mylet (syntax-rules ()

((((var init)) body)

(letrec-syntax

((doit (syntax-rules ()

(((mylet-symb mfoo-symb foo-symb)

((var init)) body)

(let ((var init))

(make-mfoo mfoo-symb foo-symb

(letrec-syntax

((mylet-symb

(syntax-rules ()

((((var init)) body)

(extract*

(mylet-symb mfoo-symb

foo-symb) (var body)

(doit () ((var init))

body))))))

body)))))))

(extract* (mylet mfoo foo) (var body)

(doit () ((var init)) body))))))

14

[backup slide]

The macro follows our plan: doing let, redefining mfoo,
redefining ourselves. We have to be sure we do it with
rightly colored ids. That’s what the rest of the code
is for. doit is the continuation from extract*. All the
examples we showed in the beginning run.

Can we do better? Can we redefine all binding forms?
Yes.

14-1

Macro defile

(define-syntax defile

(syntax-rules ()

((dbody)

(letrec-syntax

((do-defile

(syntax-rules ()

; all the overloaded symbols

(((let-symb let*-symb

letrec-symb lambda-symb

mfoo-symb foo-symb)

body-to-defile)

; ... 62 more long lines ...

(extract* (let let* letrec lambda

mfoo foo) dbody

(do-defile () dbody))

))))

15

This is the job of a macro defile, which is schematically
shown here. As we see, we extract and re-define all
binding forms. The definitions for our let, letrec and
let* are exactly like the ones in R5RS – only they use
our lambda. Our lambda makes bindings with the help
of the original lambda, and then redefines all the binding
forms and the targeted macro mfoo in the scope of the
new binding. It really looks as if lambda were infected
by a virus. Every occurrence of lambda transcribes the
corrupted gene and proliferates the virus further and
further. Too bad that the defile macro is long and the
time is short. I’ll show only one example of using the
defile macro.

15-1

A defiled example

(defile

(let* ((foo 2)

(i 3)

(foo 4)

; will capture binding of foo to 4

(ft (lambda () (mfoo)))

(foo 5)

; will capture the arg of ft1

(ft1 (lambda (foo) (mfoo)))

(foo 6))

(list foo (mfoo) (ft) (ft1 7) ’(mfoo))))

; ==> (6 6 4 7 (mfoo))

As if

(define-macro (mfoo) foo)

16

The foo in the expansion of mfoo is indeed captured
by the closest lexical binding: here it is 6, here it is 4,
and here it is 7. All in all, mfoo behaves as if it, unless
quoted, were just the identifier foo. In other words,
as if mfoo were defined as a non-hygienic, referentially
opaque macro.

To be able to capture a generated identifier by a local
binding, we need to know the name of that identifier and
the name of a macro that generates it. Macro defile has
these identifiers hard-coded as foo and mfoo. Nothing of
course prevents us from accepting these names from the
user. We thus arrive at

16-1

let-leaky-syntax – library syntax

(display

(let-leaky-syntax

quux

((mquux (syntax-rules ()

((val) (+ quux quux val)))))

(let* ((bar 1) (quux 0) (quux 2)

(lquux (lambda (x) (mquux x)))

(quux 3)

(lcquux (lambda (quux) (mquux quux))))

(list (+ quux quux) (mquux 0) (lquux 2)

(lcquux 5)))))

;==> (6 6 6 15)

17

So much work in being able to say this one word: library.

The form let-leaky-syntax is similar to let-syntax. But
let-leaky-syntax takes an additional first argument, an
identifier from the body of the defined syntax-rules to
be captured by the closest lexical binding. As the ex-
amples show, the variable is captured indeed. In par-
ticular, the macro mquux expands to an expression that
adds the value of an identifier quux twice to the value of
the mquux’s argument. Because the identifier quux is
declared special, that is, to be captured by the closest
local binding, a procedure (lambda (quux) (mquux quux))
effectively triples its argument. One quux comes from
here, and two others – again from here {the argument}.
And triple it does.

Now, discussion.

17-1

Is it legal?

• Redefinitions of let and lambda are not pro-

hibited

• Only R5RS facilities are used

• Undefined behavior is not relied upon

• let, letrec, let*, and lambda relate pre-

cisely as those in R5RS

18

What about the R5RS hygiene condition?

”If a macro transformer inserts a free refer-

ence to an identifier, the reference refers to

the binding that was visible where the trans-

former was specified, regardless of any local

bindings that may surround the use of the

macro.” [R5RS]

(define foo 1)

(defile

(let ((foo 2)) (list (mfoo) foo)))

19

One can argue that our re-defined lambda leads to a
violation of the constraint R5RS places on the macro
system: ”If a macro transformer inserts a free reference
to an identifier, the reference refers to the binding that
was visible where the transformer was specified, regard-
less of any local bindings that may surround the use of
the macro.” This paragraph however applies exactly as
it is to the defiled macros. In this code, the identifier
foo inserted by the expansion of the macro mfoo indeed
refers to the binding of foo that was visible when the
macro mfoo was defined. The twist is that the definition
of the macro mfoo happened right after the local binding
of foo. Despite mfoo being an R5RS, referentially trans-
parent macro, the overall result looks like the expansion
of a referentially opaque macro.

19-1

Isn’t it just a Scheme-like little language?

• Every macro is a syntactic extension

• Such a little language was presumed im-

possible with syntax-rules

20

The macro defile and let-leaky-syntax indeed have to
surround the victim’s code. One can therefore object
if we merely create our own ’little language’ that re-
sembles Scheme but does not guarantee the referential
transparency of macro expansions. Any macro by defi-
nition extends the language. The extended language is
still expected to obey certain constraints. The impetus
for hygienic macros was specifically to create a macro
system with guaranteed hygienic constraints. Although
syntax-rules are Turing complete, certain computations,
for example, determining if two identifiers are spelled
the same, are outside of their scope. It was a com-
mon belief therefore that syntax-rules are thoroughly
hygienic. In particular, the common interpretation of
hygiene conditions from the ’Macros that work’ paper
precludes let-leaky-syntax and similar extensions.

20-1

What is a hygiene then?

A good question

21

We conclude that the subject of macro hygiene is not

at all decided, and more research is needed to precisely

state what hygiene formally means and which precisely

assurances it provides.

21-1

Practical conclusions

• let-leaky-syntax library form:

A new class of macros without resorting to

lower-level facilities

• Encouragement

• Principle: can’t change a person =⇒
change his environment

22

For a practical programmer, we offer a let-leaky-syntax
library form. The programmer can therefore define
a class of powerful syntactic extensions with stan-
dard R5RS syntax-rules, without resorting to lower-level
macro facilities. In general, the practical macro pro-
grammer will hopefully view the conclusions of this pa-
per as an encouragement. We should realize the infor-
mal and narrow nature of many assertions about R5RS
macros. We should not read into R5RS more than it
actually says. Thus we can write more and more expres-
sive syntax-rules than we were previously led to believe.

22-1

macro-expand-time environments

(make-env

(bind ((a 1))

(bind ((b 2))

(list (lookup a) (lookup b)

(bind ((a 3))

(list (lookup a) (lookup b)))))))

; ==> (list 1 2 (list 3 2))

23

Macro make-env is to maintain macro-expand-time en-
vironment. You can bind values in the environment (as-
sociate them with keys) – and then look them up by
the key. You can shadow one binding with another. For
example, here. The example looks and feels as if bind
were just let. However, here the binding and the lookup
occurs at macroexpand time. This whole code expands
to this.

23-1

Complex identifiers

(make-env1

(lambda ((id a b c))

(lambda ((id a b))

(list (id a b c) (id a b)

’(id a b x) ’(id a b) ’x))))

; =equiv=>

(lambda (temp~1)

(lambda (temp~2)

(list temp~1 temp~2

’abx ’ab ’x)))

24

A program is a closed term. The meaning of a program
does not change if all identifiers are alpha-renamed.
Therefore, identifier doesn’t have to be a symbol. It
can be anything that can be compared in equality. Al
Petrofsky has pointed out this approach to me – which
has arisen in our previous conversation and was imple-
mented in my universally portable case-sensitive sym-
bols.

A macro make-env1 extends this idea for identifiers-
as-lists. The insight the key in the syntactic, macro-
expand-time environment don’t have to be symbols.
make-env1 uses lists of symbols as keys, and identifiers
as values.

A form (lambda ((id a b ...)) body) binds a key (a b
c ...) to a value temp~xxx. The value is a tempo-
rary, colored identifier generated by syntax-rules macros.
The hygiene property makes such identifiers unique.
The macro make-env1 re-writes (lambda ((id a b ...))
body) into (lambda (temp~xxx) re-written-body). Hence
we can indeed use composite identifiers in the body
of lambda: (id a b ...). Here id is a synonym for
’lookup’. The expansion of id in the current environ-
ment (maintained implicitly by the macro make-env1)
replaces (id a b ...) with the corresponding value –
which is the identifier temp~xxx – the same identifier that
was bound by lambda. That was the critical condition
that makes everything work.

Incidentally, the representation of identifiers by com-
plex structures isn’t outrageous. Kohlbecker’s algorithm

24-1

does a similar thing: The algorithm represents identifiers
as vectors. In our case, an identifier is an S-expression
that is distinguished by a head symbol id. The rest is
a list of one-character symbols that spell the identifier
name. See, the quoted symbols work as expected.

Really dirty stuff

A syntax-rule that generates ids

((((make-env1

(let-syntax

((add-c

(syntax-rules ()

((id a b) (id a b c)))))

(lambda ((id a b c))

(lambda ((id a b))

(lambda ((id c))

(list (id a b) (id c)

(add-c id a b)))))

))

1) 2) 3)

;==> (list 2 3 1)

25

