
MetaOCaml lives on
Lessons from implementing a staged dialect of a functional

language

http://okmij.org/ftp/ML/MetaOCaml.html

ML 2013 Workshop
September 22, 2013

We report the lessons of implementing and re-implementing

MetaOCaml, which is a superset of OCaml extending it with staging

annotations to construct and run typed code values. It is intended to

be a close dialect of OCaml so to share in OCaml’s continuing

improvement and users. The desire to make as few changes to the

core OCaml as possible dictated a number of sometimes non-obvious

design decisions. We explicate them as hints for implementors of

staged language dialects. We conclude with a research and

development agenda for typed staged languages, inviting

contributions.

1

Outline

I Introduction to (BER) MetaOCaml

BER MetaOCaml N100

Implementation techniques

Constructor problem

Cross-stage persistence

Plans

2

MetaOCaml

MetaOCaml is a superset of OCaml for writing code generators
(and generators of code generators, etc.)

I A conservative extension of OCaml

I Pure generative: no examination of the generated code

I Generators and the generated code are typed

I Guaranteeing the generation of . . .
I the well-formed code
I the well-typed code
I code with no unbound or unexpectedly bound identifiers

I Reporting errors in terms of the generator rather than the
generated code

I Generators take advantage of all abstraction facilities of
ML (higher-order functions, modules, objects, etc)

BER MetaOCaml is a conservative extension of OCaml with staging
annotations to construct and run typed code values. MetaOCaml
code without staging annotations is regular OCaml 4.
First, the generated code is assuredly well-formed: all parentheses
match. This is better than using printf to generate C (cf. ATLAS).
MetaOCaml is distinguished from Camlp4 and other such
macro-processors by: hygiene (maintaining lexical scope); generating
assuredly well-typed code; and the integration with higher-order
functions, modules and other abstraction facilities of ML, hence
promoting modularity and reuse of code generators. A well-typed
BER MetaOCaml program generates only well-typed programs: The
generated code shall compile without type errors. There are no longer
problems of puzzling out a compilation error in the generated code
(which is typically large, obfuscated and with unhelpful variable
names).
The generated code is well-scoped: there are no unbound variables in
the generated code and no insidious surprisingly bound variables.

The above benefits all come about because MetaOCaml is typed.

Types, staged types in particular, help write the code.

3

MetaOCaml look and feel

MetaOCaml is not quite like Lisp

bracket 〈x + y〉 quasiquote ‘(+ x y)

escape ∼body unquote ,body

run .!code eval (eval code)

persist 〈 pi 〉 ‘(’,pi)

I borrowed this introductory slide from the ML 2010 talk.

MetaOCaml adds to OCaml brackets and escapes to construct code

values, and run (or, eval) to execute them. Brackets and escapes look

quite like Lisp’s quasi-quotation. There is another feature: the ability

to use within brackets identifiers bound outside brackets. This is

called cross-stage persistence, CSP for short. Lisp also has something

like that, but not quite. We’ll talk about CSP later.

3

MetaOCaml look and feel

MetaOCaml is not quite like Lisp

bracket 〈x + y〉 quasiquote ‘(+ x y)

escape ∼body unquote ,body

run .!code eval (eval code)

persist 〈 pi 〉 ‘(’,pi)

〈fun x → ∼ (let body = 〈x〉 in 〈fun x → ∼body〉)〉
 〈fun x 1 → fun x 2 → x 1〉

‘(lambda (x) ,(let ((body ‘x)) ‘(lambda (x) , body)))
 ‘(lambda (x) (lambda (x) x))

Here is a small example, which also shows that the generated code
can be printed, even the code of functions. The expression .<x>. is a
code value that represents a free variable, to be bound later on. So,
MetaOCaml can manipulate open code and deal with variables so to
speak symbolically.
The example is meant to illustrate hygiene, and the crucial difference
between brackets and antiquotation in Lisp. MetaOCaml respects
lexical scoping!

If we write the example in Lisp and use antiquotation and

unquotation, the generated code would have two instances of x,

indistinguishable. The generated code will mean quite a different

thing though. MetaOCaml maintains the distinction between

variables that although named identically like x but bound at different

places. So, a variable in MetaOCaml is not just a symbol.

4

Outline

Introduction to (BER) MetaOCaml

I BER MetaOCaml N100

Implementation techniques

Constructor problem

Cross-stage persistence

Plans

5

Brief History

Original MetaOCaml

I a fork of OCaml along the lines of MetaML

I designed and architectured by Walid Taha and developed
by Cristiano Calcagno

I started in September 2000, reached its current form by
2003, last released in 2006

MetaOCaml started as a fork of OCaml along the lines of MetaML.

Designed and architectured by Walid Taha and developed by

Cristiano Calcagno, MetaOCaml had reached its current form by

2003. The increasing divergence between OCaml and MetaOCaml

made it harder and harder to merge the changes. With the funds for

the project dried up and the daunting prospect of merging many

changes that appeared in OCaml 3.10 and 3.11, the development of

MetaOCaml has ceased. Its last released version was 3.09.1 alpha 030.

6

BER N100

I A clean-slate re-implementation

I Different algorithms, different data structures

I Different design decisions

I Extensive comments

I Smaller kernel and closer to OCaml,
to ease maintenance

kernel 49K patch to OCaml files, 77K new trx.ml

28 OCaml files patched, 6 of which trivially
user-level 58K pretty-printer (Jacques Carette),

3K running the code and top level
tests 54K

Regression test suite!

Other differences: let!, fixing a few old bugs, better CSP

BER MetaOCaml is a re-implementation of MetaOCaml. It has not
only new code and new algorithms, but also new design decisions. It
also has comments in the code, and a regression test suite! There only
small piece inherited from the old MetaOCaml are the changes to
OCaml parser and lexer to recognize brackets, escape, and run.
The goal of the BER MetaOCaml project is to reduce as much as
possible the differences between MetaOCaml and the mainline
OCaml, to make it easier to keep MetaOCaml up-to-date and ensure
its long-term viability. We aim to find the most harmonious way of
integrating staging with OCaml, with the remote hope that some of
the changes would make it to the main OCaml branch.
BER N100 is much less invasive into OCaml. Only 28 of OCaml files
are patched, of which 6 trivially (one or two lines, AST
printing/dumping). Previously (BER N004) the patch to
typing/typecore.ml had 564 lines of additions, deletions and context;
now, only 328 lines. (The core MetaOCaml is trx.ml, with 1800 lines.)

The code is restructured into kernel, responsible for producing and

type-checking code values, and user level. Processing code values such

as printing and executing is done in the ‘user-level’ libraries.

Programmers may write new ways of processing code values, e.g., to

compile them to LLVM or JavaScript, without modifying

(Meta)OCaml.

7

Outline

Introduction to (BER) MetaOCaml

BER MetaOCaml N100

I Implementation techniques

Constructor problem

Cross-stage persistence

Plans

8

Implementing staging I

I Add staging forms to AST

I Add staging forms to the typed AST

I Add staging forms to IL

I Account for staging forms in the code generator

. . . might have just as well re-implement the language

So, how can we add MetaOCaml-like staging to your functional
language system?

The most straightforward way of adding staging to a functional

language is the most difficult one. We have to modify everything.

Perhaps it is simpler to design the language afresh, with staging from

the outset. But there is a much simpler way.

9

Implementing staging II

Pre-process the staging away

fun x → 〈fun y → ∼x ∗ y + 1〉

pre-process to

fun x → lam ”y” (fun y → (add (mul x y) (int 1)))

where code combinators are:

type α cod
val int : int → int cod
val add: int cod → int cod → int cod
val mul: int cod → int cod → int cod
val lam: string → (α cod → β cod) → (α→β) cod

A much simpler approach is to translate, or preprocess away, brackets

into expressions built with code combinators, of the following

signature. When we evaluate the expression, we generate the code. It

is that simple.

10

Implementing staging II

+ easy to implement (preprocessor, camlp4, . . .)
no modifications to the base language

+ typing is preserved!

Works surprisingly well. Cf. Scala’s LMS

− conditionals, loops, other special forms?
introduce thunks

− pattern-matching?

ugly but hackable: see Scala-Virtualized

− type-annotations?

ugly but hackable

− let-polymorphism?
Fatal

− polymorphic code values?
Prevented by value-restriction

Does this really work? Yes, it does. In fact, Scala’s Lightweight
Modular Staging uses a similar idea.
The technique can be implemented without modifying the base
language compiler at all, by writing a stand-alone preprocessor.

The best news is that typing is preserved! That is, if the

postprocessed code type checks, the original code is well-typed by

MetaOCaml rules, and hence the generated code will be well-typed.

10

Implementing staging II

+ easy to implement (preprocessor, camlp4, . . .)
no modifications to the base language

+ typing is preserved!

Works surprisingly well. Cf. Scala’s LMS

− conditionals, loops, other special forms?
introduce thunks

− pattern-matching?

ugly but hackable: see Scala-Virtualized

− type-annotations?

ugly but hackable

− let-polymorphism?
Fatal

− polymorphic code values?
Prevented by value-restriction

There are complications however. How to deal with special forms such

as conditionals and loops? That seems straightforward: introduce

thunks.

10

Implementing staging II

+ easy to implement (preprocessor, camlp4, . . .)
no modifications to the base language

+ typing is preserved!

Works surprisingly well. Cf. Scala’s LMS

− conditionals, loops, other special forms?
introduce thunks

− pattern-matching?

ugly but hackable: see Scala-Virtualized

− type-annotations?

ugly but hackable

− let-polymorphism?
Fatal

− polymorphic code values?
Prevented by value-restriction

What about pattern-matching forms and type annotations?

10

Implementing staging II

+ easy to implement (preprocessor, camlp4, . . .)
no modifications to the base language

+ typing is preserved!

Works surprisingly well. Cf. Scala’s LMS

− conditionals, loops, other special forms?
introduce thunks

− pattern-matching?
ugly but hackable: see Scala-Virtualized

− type-annotations?
ugly but hackable

− let-polymorphism?
Fatal

− polymorphic code values?
Prevented by value-restriction

That is quite a nasty problem, but solvable, by translating to

deconstructors and special type annotation functions (like Haskell’s

typeAs). The paper Scala-Virtualized talks about such translations in

detail.

10

Implementing staging II

+ easy to implement (preprocessor, camlp4, . . .)
no modifications to the base language

+ typing is preserved!

Works surprisingly well. Cf. Scala’s LMS

− conditionals, loops, other special forms?
introduce thunks

− pattern-matching?
ugly but hackable: see Scala-Virtualized

− type-annotations?
ugly but hackable

− let-polymorphism?
Fatal

− polymorphic code values?
Prevented by value-restriction

Alas, the polymorphic let like .<let f = fun x -> x in ...>. is a
show stopper.

The let-binding within brackets becomes after translation the

lambda-binding, which can’t be polymorphic. Polymorphism in

general is problematic in this approach: since code is translated to an

expression, a polymorphic code value (e.g., let f = .<fun x ->

x>.) will be translated into the monomorphic expression, due to the

value restriction.

11

Implementing staging III
Translate staging away after type-checking

fun x → 〈fun y → ∼x ∗ y + 1〉

becomes

fun x → let y = gensym ”y” in
mkLam y (mkApp (mkIdent ”+ ”)

[mkApp (mkIdent ”∗”) [x; y];
mkConst 1])

Future-stage bound variable becomes present-stage bound
variable, but at the type string loc
Why do we need gensym at run-time?

+ Future-staged code type-checked properly, including
polymorphism

+ No modification of the IL or the back-end

− Have to modify the type-checker

− Have to modify the AST

This is the approach used in MetaOCaml. No need to modify the
back-end (the code generator) but must modify the type checker to
type check staging constructs. Luckily, the modifications are not that
big. See the typing rules in many MetaOCaml papers.

The future-stage code is type-checked properly, including polymorphic

constructs. The translation of staging away looks like the one before,

but it occurs after the type-checking.

12

What are the code values?

What is α code?

I machine code or IR:
difficult to optimize and compose

I typed AST:
difficult to compose (e.g., deal with type environment,
polymorphism)

I AST

If a polymorphic record is spliced in in two places, we must refresh

the type variables. Dealing with the type environment (merging, etc.)

is difficult, especially when type variables are concerned.

13

Outline

Introduction to (BER) MetaOCaml

BER MetaOCaml N100

Implementation techniques

I Constructor problem

Cross-stage persistence

Plans

14

BER vs old MetaOCaml

Substantial differences between BER and old MetaOCaml

I constructor restriction

I scope extrusion check
prevents building code with unbound or mistakenly bound
variables,
even in the presence of effects

BER MetaOCaml N100 differs from the old MetaOCaml in two
substantive respects:

1. Constructor restriction: all data constructors and record labels
used within brackets must come from the types that are declared
in separately compiled modules;

2. Scope extrusion check: attempting to build code values with
unbound or mistakenly bound variables (which is possible with
mutation or other effects) is caught early, raising an exception
with good diagnostics.

15

Constructor problem

Generator

type foo = Foo | Bar of int
〈let x = Foo in match x with Bar z →z〉

Generated code

let x = Foo in match x with Bar z → z

A very painful solution in the old MetaOCaml,
which contributed to its demise

Here is the constructor problem: the shown MetaOCaml code would

generate code with undefined constructors Foo and Bar. The

generated code won’t compile!

15

Constructor problem

Generator

type foo = Foo | Bar of int
〈let x = Foo in match x with Bar z →z〉

Generated code

let x = Foo in match x with Bar z → z

A very painful solution in the old MetaOCaml,
which contributed to its demise

The old MetaOCaml had a very painful solution: storing the entire

type environment, in a hackish way, in the AST representing the

generated code. The generated code was a bizarre mixture of the

untyped and typed AST, which required very many changes to the

OCaml typechecker. OCaml typechecker is very complex, and is

getting more complex. We really don’t want to patch it a lot. That

invasiveness was one of the factors that MetaOCaml could not be

maintained: too much effort to keep up with OCaml.

16

Constructor problem: Solution 1

Generator

〈let x = None in match x with Some z →z〉

Generated code

let x 18 = None in (match x 18 with Some (z 19) → z 19)

Constructor restriction
All data constructors and record labels used within brackets
must come from the types that are declared in separately
compiled modules

There is no problems here: the data type option is in a standard

library, which is presumed available to a compiler. This points to a

solution, the constructor restriction that is currently implemented: all

data constructors and record labels used within brackets must come

from the types that are declared in separately compiled modules.

17

Constructor problem: Solution 2

Generator

type foo = Foo | Bar of int
〈let x = Foo in match x with Bar z →z〉

Generated code

let module M =
struct
type foo = Foo | Bar of int

end
in let open M in
let x = Foo in match x with Bar z →z

The code value is the closure over the constructor environment

OCaml offers another solution. I’m thinking about it. So far, the

constructor restriction isn’t really bothersome.

18

Outline

Introduction to (BER) MetaOCaml

BER MetaOCaml N100

Implementation techniques

Constructor problem

I Cross-stage persistence

Plans

19

CSP complexities

Polymorphic lift

let lift x = 〈x〉
 val lift : α→ (β, α) code = <fun>

Aliasing or copying?

let r = ref 0 in
let c = 〈let () = r := 1 in !r〉 in
(.! c, ! r)

Really copying?

let c = open in ”/etc/motd” in lift c;;
 (α, in channel) code =
〈(∗ cross−stage persistent value (as id : x) ∗)〉

CSP is tantamount to a polymorphic lift, which is quite problematic.

For example, what is the meaning of a CSP of a mutable cell value?

It was different for bytecode vs native MetaOCaml. What is the CSP

meaning for an open file?

20

No polymorphic lift

Planned new rules of CSP

I Base types: copy

I Global identifiers: always share

I ADT, immutable records, known-good types: copy

I Abstract, polymorphic, functional and all other types:
prohibit

Feedback is appreciated

In short, only global, ‘standard library’ identifiers can be assumed to
be defined at the time the generated code is compiled and run.
Therefore, when such identifiers occur within brackets, the generated
code can refer to them by name. For other identifiers, we CSP by
value, or lift – which will work only at specific types. Those are base
types, structural immutable types (data types), and abstract types
whose manifest type can be deduced and it is liftable. For base types,
sharing is not observable anyway. I pretend that strings are
immutable (do the same for arrays?)
Values of polymorphic of functional types cannot be lifted. (CSP of
code values is allowed if bound to global identifiers. In that case, the
code value is ensured to be closed.) We report an error at trx time
(compile-time error). Polymorphic lift becomes inexpressible.

I am very interested to know how much code has to be changed if this

proposal is implemented. The feedback is greatly appreciated.

21

No polymorphic lift

Planned new rules of CSP

How to lift functions, code, file descriptors?

I is it needed?

I bind to global identifiers

I be explicit

let glob = ref None
let res = ... glob := Some v; ...

〈from some !glob〉

Feedback is appreciated

Lifting has to be restricted. But we don’t have bounded
polymorphism in OCaml. So, I will have to use a combination of
type-directed (when the concrete type is known) and run-time (alas)
errors. (run-time inspection doesn’t work since (1,2) and array of 1 2
have the same representation, but the latter is mutable.)
Another idea: a family of functions lift: ’a desc -> ’a ->

(’cl,’a) code and ’a desc constructors intdesc: int desc

arrdesc, etc. They do type-specific lifting, depending on ’a desc

Also, it is always possible to use global identifier (global mutable cell

or array). Before such a workaround happened behind the scenes in

the native code. Now it has to be explicit.

22

Outline

Introduction to (BER) MetaOCaml

BER MetaOCaml N100

Implementation techniques

Constructor problem

Cross-stage persistence

I Plans

23

Research plans

Developing staged calculi that account for

I staging and modules
Can staging be used as a module system?

I staging and objects

I staging and GADTs

Prove that the restriction on CSP avoids the unsoundness
problems with generalizations

I have no students or money, but I do have an extensive program
about staging, which includes both research and development.
On the research front is developing a staged calculus that accounts for
objects, modules, GADT; prove that the restriction on CSP avoids
the unsoundness problems with generalizations.

Also interesting is integration of staging and modules (the latter have

became first-class in OCaml). Modules are used more and more, so

we need a good story. Staging and modules is a potentially huge area:

can staging even be used as a module system?

24

Kernel level development

I Move run out of the kernel: BE MetaOCaml
(alternatively, look into levels)

I CSP

I Native MetaOCaml

Longer term

I Relax the restriction on data type declarations

Here is the development program for the kernel part of the
MetaOCaml, short- and longer-term.

Relax the constructor restriction using local modules

25

User-level

I Bring back (re-implement) off-shoring:
the translation from the generated code (a small subset of
OCaml) to C, Fortran, LLVM, Verilog, JS, etc.

I More applications, more (Shonan) challenges

Everyone can participate, everyone is welcome

Further on the development agenda: add more ways to ‘run’ code
values, by translating them to C, Fortran, LLVM, Verilog.
MetaOCaml can then be used for generating libraries of specialized C,
etc. code.

This is user level: the barrier of entry is low, no need to be

recompiling the system.

26

Conclusions

The experience of adding staging to a functional language

I Types help

I Piggy-backing on the existing implementation: faster
start-up, easier maintenance

I Preprocessing almost works

I Representation of code values is some sort of closure over
the signature (user-defined types)

I CSP are important in practice, but hard to get right

In conclusion, what can I say from experience. First, types help, and
staged types help especially. So, making your staged forms typed and
generating the well-typed code are good ideas.
Another good idea is to piggy-back on the existing implementation,
modifying it as little as possible. It is easy to get off the ground and
maintain the staged language.

User-defined types are not treated in the staged calculi, but they are

very important in practice. CSP are also important in practice, and

hard to get right. The proposal I showed is the result of long and

painful thoughts.

27

Suggestions for OCaml

How the OCaml HQ might help

I New structured constant Const csp value? Tempting to
remove from MetaOCaml, tempting to move to OCaml
Use cases: references to big structures, syntactic extensions

I Merge metalib/print code.ml and tools/pprintast.ml
Use optional arguments to make the printing extensible

I Unify printing functions for various trees and make them
prettier. The very same fmt longident aux occurs 3 times in
the OCaml code base

I Better and modular error handling
exception Error of (format → unit)

This is a back-up slide. I just want to show that I have this slide, to
talk offline with the members of OCaml team. For now I just want to
show that I have suggestions, and they are not that big. Even small
things will make me happy.
What part of MetaOCaml can be moved to the OCaml proper
Merge metalib/print code.ml and tools/pprintast.ml Both are
essentially the same. We could use optional arguments to make the
printing extensible and robust to AST changes.
The very same fmt longident aux occurs three times in the OCaml
code base (parsing/printast.ml, tools/pprintast.ml,
typing/printtyped.ml)
Currently, to add a new error, say, to typecore.ml one has to add the
error to typecore.mli, make the same addition to typecore.ml,
augment the printing function in typecore.ml. To add a new category,
one has to augment driver/errors.ml. I have tried a uniform exception
Error of (format → unit) The error carries the function that will print
out the error message on the supplied ppf. Handler becomes much
more extensible! This approach does seem to work out.

On one hand, it is tempting to eliminate Const csp value. There will

no longer be a need to modify the code generator (in bytecomp/). On

the other hand, Const csp value does make sense as a structured

constant. Consider a constant that refers to a big array, or even array

in ancient. Representing such constant in a Parsetree as a string is

ungainly. Syntactic extensions in particular could use Const csp value.

	Introduction to (BER) MetaOCaml
	BER MetaOCaml N100
	Implementation techniques
	Constructor problem
	Cross-stage persistence
	Plans

