
First-class modules: hidden power and
tantalizing promises

to GADTs and beyond

Jeremy Yallop Oleg Kiselyov
Applicative Ltd

ML 2010 – ACM SIGPLAN Workshop on ML
September 26, 2010

Honestly there was no collusion with Jacques and Alain. In fact we
have learned of each other’s presentation from the list of accepted
papers. It is our luck that we have just heard the introduction to
first-class modules from the implementors themselves. In this talk,
which is joint work with Jeremy Yallop, we want to show a couple of
applications of this cool new feature of OCaml. Our first application is
Generally Awesome Data Types, or GADTs, which seem to have
fascinated people since inception.

2

Outline

I GADT Introduction

Leibniz Equality

Rising up the ranks

Injectivity?

Implementation of Leibniz Equality

Generic Programming

Conclusions

3

Monomorphic Addition

let add int x y = x + y
↪→ val add int : int -> int -> int = <fun>

let add flo x y = x +. y
↪→ val add flo : float -> float -> float = <fun>

We start by introducing GADTs using OCaml. We start very slowly. In
OCaml, we can add integers, using regular plus, and floats, using a
different operation, dotted plus. For reference, here are these
operations and their signatures. As I said, we start very slow. Suppose
my program manipulates lots of integers and floats, regarding a float
as a bigger integer with sometimes less precision. Most of my
algorithms don’t care if they operate on ints or on floats. So, I would
like to define a data type that is either an int, or a float. I would like to
add such hybrid numbers, among other things.

4

‘Untyped’ Hybrid Numbers

type uif = Int of int | Flo of float

let add uif x y =
match (x,y) with
| (Int x, Int y) -> Int (x + y)
| (Flo x, Flo y) -> Flo (x +. y)

That is what the variant data type is for. We define a variant uif with
two alternatives, Int and Flo. We write our addition function thusly.

4

‘Untyped’ Hybrid Numbers

type uif = Int of int | Flo of float

let add uif x y =
match (x,y) with
| (Int x, Int y) -> Int (x + y)
| (Flo x, Flo y) -> Flo (x +. y)
| (Flo x, Int y) -> ???

Wish
The compiler preventing mixing up ints and floats in generic
numeric algorithms, ensuring that an int can only be added to
an int.

But we have missed case alternatives, as the compiler tells us. We
haven’t defined adding a float and an int, for example. Suppose we
don’t want to do that. My algorithm should deal only with integers, or
only with floats, but it should not mix them. So, I would like this extra
match clause to be in error. Furthermore, I would like it to be a
statically determined error. I want the compiler prevent me from
mixing ints and floats in generic numeric algorithms, ensuring that an
int can only be added to an int. Alas, we can’t obtain such a static
guarantee from a variant data type.

5

‘Typed’ Hybrid Numbers

type ’a sif = Int of (int,’a) eq * int
| Flo of (float,’a) eq * float

We need a variant data type with an attribute, a type parameter, that
tells us which variant is present in any instance of the data type. We
need a data type like ’a sif. It has two variants as in the untyped
uif shown earlier. It also has a parameter ’a. The first variant says
that ’a is actually int; in the second variant, ’a is actually float. It
says so by including the evidence, the witness eq.

6

Constructive Type Equality

module type EQ = sig
type (’a, ’b) eq

val refl : unit -> (’a, ’a) eq
val cast : (’a, ’b) eq -> ’a -> ’b

end

module SomeEq : EQ = struct
type (’a, ’b) eq = ’a -> ’b

let refl () = fun x -> x
let cast eq a = eq a

end

The value of the type (’a,’b) eq is the witness of the type equality
between two types ’a and ’b. It is the constructive witness: if we
obtain the witness that the type ’a is equal to the type ’b, we can
convert any value of the type ’a to the value of the type ’b. After all, if
these types are really the same, then the conversion is just the identity.

6

Constructive Type Equality

module type EQ = sig
type (’a, ’b) eq

val refl : unit -> (’a, ’a) eq
val cast : (’a, ’b) eq -> ’a -> ’b

end

module SomeEq : EQ = struct
type (’a, ’b) eq = ’a -> ’b

let refl () = fun x -> x
let cast eq a = eq a

end

Here is one, very primitive way of implementing the signature EQ. It
gives the right idea of the implementation. But we will need more
sophistication soon. For now, let us assume an implementation of EQ
and see what we can do with it.

7

‘Typed’ Hybrid Numbers

type ’a sif = Int of (int,’a) eq * int
| Flo of (float,’a) eq * float

let make int (x : int) : int sif = Int (?? : (int,’a) eq,x)

First, we need a way to create hybrid numbers. For example, we want
a function taking an integer x and returning the corresponding hybrid
number tagged appropriately as int sif. Obviously we choose the
Int alternative. What about the witness, of the type (int,’a) eq?
Well, in our case, ’a is int. So, we need a witness of the type
(int,int) eq. We happen to have the value of that type: it’s an
instance of refl ().

7

‘Typed’ Hybrid Numbers

type ’a sif = Int of (int,’a) eq * int
| Flo of (float,’a) eq * float

let make int x = Int (refl (), x)
↪→ val make int : int -> int sif = <fun>

let make flo x = Flo (refl (), x)
↪→ val make flo : float -> float sif = <fun>

Thus, we can write make int as shown. No type annotations are
necessary; the desired type is inferred. We likewise inject floats.

8

Typed Hybrid Addition

let add sif (x : ’a sif) (y : ’a sif) : ’a sif =
match (x,y) with
| (Int (eq,x), Int (,y)) -> Int (eq, x + y)
| (Flo (eq,x), Flo (,y)) -> Flo (eq, x +. y)

↪→ val add sif : ’a sif -> ’a sif -> ’a sif = <fun>

We can now write the hybrid addition, roughly the way we did it for
the untyped case.

8

Typed Hybrid Addition

let add sif (x : ’a sif) (y : ’a sif) : ’a sif =
match (x,y) with
| (Int (eq,x), Int (,y)) -> Int (eq, x + y)
| (Flo (eq,x), Flo (,y)) -> Flo (eq, x +. y)
| (Flo ((eqf : (float,’a) eq),x),

Int ((eqi : (int,’a) eq),y)) -> failwith "impossible"

↪→ val add sif : ’a sif -> ’a sif -> ’a sif = <fun>

But what about this case alternative, attempting to add a float to an
integer? The argument eqf of the type constructor Flo is a witness
that the type ’a is the same as float. The first argument eqi of the
Int data constructor likewise witnesses the equality between ’a and
int. But it is the same ’a. So, in this case alternative we would have
that int is equal to float, which is not possible. So, this alternative
cannot actually occur. Alas, OCaml does not see this impossibility and
warns about the inexhaustive pattern-match anyway. GHC, at least
version 6.10 and below issues a similar warning too. So, OCaml is in a
good company. So far, only dependently-typed systems like Twelf,
Coq, or Agda can deduce that omitted pattern-match clauses are
impossible given the type of the expression.

9

Twomorphic Addition

↪→ val add sif : ’a sif -> ’a sif -> ’a sif = <fun>

add sif (make int 1) (make int 2)
↪→ - : int sif = Int (<abstr>, 3)

add sif (make flo 1.) (make flo 2.)
↪→ - : float sif = Flo (<abstr>, 3.)

add sif (make int 1) (make flo 2.)
Error: This expression has type float sif
but an expression was expected of type int sif

Here are a few examples of using the hybrid addition. We can add two
integers or two floats. Attempting to mix ints and floats leads to a type
error, as we always wanted.
The operation add sif looks, from its type, and acts, from the
examples below, like truly polymorphic addition. However, the
polymorphism is not over all types; only over two types, int and float.
We have gained something like a bounded, enumerable
polymorphism: n-morphism.

10

Hybrid-scalar Addition

let scalar add sif (x : ’a sif) (y : ’a) : ’a sif

=
match x with
| Int (eqi,x) -> Int (eqi, x + y)
| Flo (eqf,x) -> Flo (eqf, x +. y)

This was all too simple. One may almost think that phantom types
would have sufficed. They won’t. To see that, let’s look at even simpler
example: adding to a hybrid number an unboxed number, so to speak.
We want the function scalar add sif of the shown signature.

10

Hybrid-scalar Addition

let scalar add sif (x : ’a sif) (y : ’a) : ’a sif =
match x with
| Int (eqi,x) -> Int (eqi, x + y)
| Flo (eqf,x) -> Flo (eqf, x +. y)

We may attempt to write it as before.

10

Hybrid-scalar Addition

let scalar add sif (x : ’a sif) (y : ’a) : ’a sif =
match x with
| Int (eqi,x) -> Int (eqi, x + y:int)
| Flo (eqf,x) -> Flo (eqf, x +. y:float)

Phantom types would not do

But we’ve got a problem. In the first clause, y, as an argument of the
integer addition, must be of the type int. Likewise, in the second
clause, y must be a float. But it is the same y, the second argument of
the function. It can’t be both an int and a float. A phantom-type
solution would grind to a halt.

11

Hybrid-scalar Addition

let scalar add sif (x : ’a sif) (y : ’a) : ’a sif =
match x with
| Int ((eqi : (int,’a) eq), x) ->

Int (eqi, x + cast ((symm eqi) : (’a,int) eq) y)

| Flo (eqf,x) -> Flo (eqf, x +. cast (symm eqf) y)
↪→ - : ’a sif -> ’a -> ’a sif = <fun>

scalar add sif (make int 1) 2
↪→ - : int sif = Int (<abstr>, 3)
scalar add sif (make flo 1.) 2.
↪→ - : float sif = Flo (<abstr>, 3.)
scalar add sif (make flo 1.) 2
Error: This expression has type int but an expression was
expected of type float

Let’s look at the problem again. The annotation says that the
argument y is of some type ’a. If the Int pattern-match succeeds, we
obtain the proof that ’a is int. We can use this proof to convince the
type checker that y is an integer in that case. First we use the
symmetry property of equality (which I haven’t shown you yet but
hopefully you believe in it) and then we use the cast to constructively
say that y is an integer and can be added with other integers.
Likewise, in the second clause we use a different proof to show that y
is a float, and can be added to a float. As you can see, y can be both an
int and a float – only not at the same time. This code does type-check,
and we obtain the desired polymorphic, twomorphic type. None of the
type annotations are actually needed. The function works as expected.

12

Outline

GADT Introduction

I Leibniz Equality

Rising up the ranks

Injectivity?

Implementation of Leibniz Equality

Generic Programming

Conclusions

13

Leibniz Equality Wanted

let incr arr typeclass
(plus : ’a -> ’a -> ’a) (x : ’a) (y : ’a array) =

for i = 0 to pred (Array.length y) do
y.(i) <- plus y.(i) x

done

let incr arr (x : ’a sif) (y : ’a array)

=
match x with
| Int (eq,x) ->

incr arr typeclass (+) x (cast (symm eq) y)
...

Error: This expression has type ’a array
but an expression was expected of type ’a

But we want more. We not only wish to add a hybrid number to an
unboxed number; we also wish to add a hybrid number to any
collection of unboxed numbers, for example, an array. We want the
function inrc arr of the shown signature.

13

Leibniz Equality Wanted

let incr arr typeclass
(plus : ’a -> ’a -> ’a) (x : ’a) (y : ’a array) =

for i = 0 to pred (Array.length y) do
y.(i) <- plus y.(i) x

done

let incr arr (x : ’a sif) (y : ’a array) =
match x with
| Int (eq,x) ->

incr arr typeclass (+) x (cast (symm eq) y)
...

Error: This expression has type ’a array
but an expression was expected of type ’a

We try to write it like the scalar add sif before. But now the type
checker complains. Indeed, the evidence eq says that the type ’a is
equal to int. But we need to prove that ’a array is equal to int

array. By the way we also illustrate another approach to bounded
polymorphism: type classes with a dictionary (evidence) passing.

14

Leibniz Equality Still Wanted

let incr arr (x : ’a sif) (y : ’a array) =

let cast array (type s) (type t)
(eq: (s,t) eq) (x: s array) : t array

= Array.map (cast eq) x ???

in match x with
| Int (eq,x) ->

incr arr typeclass (+) x (cast array (symm eq) y)
...

Instead of just cast we need a function cast array of the shown
signature. At first blush, it seems easy: we just map the conversion
function. First of all, this is slow: we have to rebuild the entire array
doing essentially nothing. Second: we have to rebuild the entire array.
The result is a physically different array! To update the original array
in-place we need two more copying operations. This solution becomes
less and less satisfactory. Finally, we may be given a collection with no
mapping function. We need truly the Leibniz equality. First-class
modules give it to us.

15

Constructive Type Equality (in full)

module type TyCon = sig type ’a tc end

module type EQ = sig
type (’a, ’b) eq

val refl : unit -> (’a, ’a) eq Reflexivity Axiom

module Subst (TC : TyCon) : sig Leibniz Substitution
val subst : (’a, ’b) eq -> (’a TC.tc, ’b TC.tc) eq
(* ∀tc : (∗ → ∗). α = β implies α tc = β tc *)

end

val cast : (’a, ’b) eq -> ’a -> ’b Constructive type eq.

end

Now, this is the complete definition. As before, cast is the constructive
proof of the type equality, letting us convert the value of the type ’a to
the value of the type ’b. The value refl constructively expresses the
reflexivity axiom, and Subst expresses the Leibniz substitution
principle: equals can be substituted for equals. The module type TC

used by Subst, is, as you have guessed it, a type constructor. So, Subst
says that given the proof of equality of ’a and ’b we can compute the
proof of equality of ’a tc and ’b tc for any type constructor tc. Type
constructor is to be understood a bit loosely, as we shall see.
Essentially, tc is a function on types, not necessarily injective.

16

Leibniz Equality Apprehended

let incr arr (x : ’a sif) (y : ’a array) =

let cast array (type s) (type t)
(eq: (s,t) eq) (y: s array) : t array

= let module S =
Subst(struct type ’a tc = ’a array end) in

cast ((S.subst eq) : (’a array, int array) eq) y

in match x with
| Int (eq,x) ->

incr arr typeclass (+) x (cast array (symm eq) y)
| Flo (eq,x) ->

incr arr typeclass (+.) x (cast array (symm eq) y)

↪→ val incr arr : ’a sif -> ’a array -> unit = <fun>

Now that we have Leibniz substitution, we can use as follows. We
instantiate the Leibniz substitution to the particular type constructor:
array. Then S.subst eq is the witness of the type equality between
array types. We use the witness to tell that y is really an array of
integers or an array of floats.
Pop quiz: why do we need this new notation for the polymorphic
functions, (type s) and (type t). Could we used ordinary type
variables, like ’s and ’t?

16

Leibniz Equality Apprehended

↪→ val incr arr : ’a sif -> ’a array -> unit = <fun>

let y = [|1;2;3|] in incr arr (make int 1) y; y;;
↪→ - : int array = [|2; 3; 4|]

let y = [|1.;2.;3.|] in incr arr (make flo 1.) y; y;;
↪→ - : float array = [|2.; 3.; 4.|]

Here are the examples of using our array incrementation. Of course
we get a type error if we try to mix up integers and floats.

17

Outline

GADT Introduction

Leibniz Equality

I Rising up the ranks

Injectivity?

Implementation of Leibniz Equality

Generic Programming

Conclusions

18

Rising up the ranks

type (’a,’b) coll = Arr of (’b array, ’a) eq * ’b array
| Lst of (’b list, ’a) eq * ’b list

let make coll arr x = Arr (refl(), x)
↪→ val make coll arr : ’a array -> (’a array, ’a) coll

let appendcu (x : (’a,’b) coll) (y : ’a) =
match x with
| Arr (eq,x) ->

Arr (eq, Array.append x (cast (symm eq) y))
| Lst (eq,x) ->

Lst (eq, List.append x (cast (symm eq) y))
↪→ val appendcu : (’a, ’b) coll -> ’a -> (’a, ’b) coll

The pattern we’ve seen generalizes further. We can define a collection
of elements abstracting not only over the type of the elements but also
over the type of the collection, list or an array, for example. We can
build sample collections with make coll arr or the similar
make coll lst (not shown). We can append a collection to an array
or list, appendcu.

19

Rising up the ranks

type (’a,’b) coll = Arr of (’b array, ’a) eq * ’b array
| Lst of (’b list, ’a) eq * ’b list

let add head (x: (’a,’b) coll) (y:’b sif) =
let add op eq x y = cast eq (op (cast (symm eq) x) y)

in match (x,y) with
| (Lst (eql,xh::xt), Int(eqi,y)) ->

Lst(eql, (add (+) eqi xh y)::xt)
...
↪→ val add head : (’a, ’b) coll -> ’b sif -> (’a, ’b) coll

(int list, float) coll is not a populated instance of
(’a, ’b) coll

Or we can increment the element at the head of the collection with
the given hybrid number. The types ensure that the increment and the
elements of the collection have the same type. We combine the two
GADTs, for numbers and for the collections of numbers.
We see a pattern: the type is more polymorphic, but only few
alternatives are available. Not all instantiations of a type schema are
populated.

20

Outline

GADT Introduction

Leibniz Equality

Rising up the ranks

I Injectivity?

Implementation of Leibniz Equality

Generic Programming

Conclusions

21

Injectivity

(’a,’b) eq =⇒ (’a tc, ’b tc) eq

We have seen that from the equality of two types ’a and ’b we can
constructively deduce the equality of ’a tc and ’b tc for any
user-given type constructor tc. What about the converse?

21

Injectivity

(’a,’b) eq =⇒ (’a tc, ’b tc) eq

type ’a tc = ’a array
(’a,’b) eq ⇐= (’a tc, ’b tc) eq ???

It could be very useful: if two array types are the same, their element
types are the same. We should be able to use that fact.

21

Injectivity

(’a,’b) eq =⇒ (’a tc, ’b tc) eq

type ’a tc = int
(’a,’b) eq ⇐= (’a tc, ’b tc) eq ???

Alas, things are a bit complex: the converse does not always hold. We
may need type-checker’s internal knowledge about injectivity – which
is, unfortunately, not available to us.

21

Injectivity

(’a,’b) eq =⇒ (’a tc, ’b tc) eq

(’a,’b) eq weak ⇐= (’a tc, ’b tc) eq
only for functor tc

So far, injectivity holds only for functors tc (with the mapping
function) and it only gives us a weak Leibniz equality (that is, without
the Subst operation).

22

Outline

GADT Introduction

Leibniz Equality

Rising up the ranks

Injectivity?

I Implementation of Leibniz Equality

Generic Programming

Conclusions

23

Implementation of EQ

(* data EqTC a b = Cast{cast :: ∀ tc. tc a -> tc b} *)
module type EqTC = sig

type a and b
module Cast : functor (TC : TyCon) -> sig

val cast : a TC.tc -> b TC.tc
end

end

type (’a, ’b) eq =
(module EqTC with type a = ’a and type b = ’b)

let refl (type t) () = (module struct
type a = t and b = t
module Cast (TC : TyCon) = struct
let cast v = v end

end : EqTC with type a = t and type b = t)

Briefly, here is the real implementation of the signature EQ. The
witness of the type equality (’a,’b’) eq is a first-class module, of the
type EqTC, containing the types in question and the ability to convert
from a tc to b tc for any type constructor tc given by the user. The
module EqTC is equivalent to this Haskell data type, familiar from
Baars and Swierstra’s “Typing Dynamic Typing”. The function refl

constructs the first-class module witnessing the equality of the type ’a

with itself. We certainly can convert the value of any ’a tc to itself,
using the identity function.

24

Substituting
let cast (type s) (type t) s eq t =

let module S eqtc = (val s eq t :
EqTC with type a = s and type b = t) in

let module C = S eqtc.Cast(struct type ’a tc = ’a end)
in C.cast

module Subst (TC : TyCon) = struct
let subst (type s) (type t) s eq t = (module struct
type a = s TC.tc and b = t TC.tc
module S eqtc = (val s eq t :

EqTC with type a = s and type b = t)
module Cast (SC : TyCon) = struct
module C = S eqtc.Cast(struct

type ’a tc = ’a TC.tc SC.tc end)
let cast = C.cast
end

end : EqTC with type a = s TC.tc and type b = t TC.tc)
end

There is a lot of boiler-plate in this code. Yes, we have to repeat this
signature EqTC with type a = over and over again.

25

Outline

GADT Introduction

Leibniz Equality

Rising up the ranks

Injectivity?

Implementation of Leibniz Equality

I Generic Programming

Conclusions

26

Really Generic Programming

module type Interpretation : sig
type ’a tc
val unit : unit tc
val int : int tc
val (*) : ’a tc -> ’b tc -> (’a * ’b) tc

end

module type Repr = sig
type a
module Interpret (I : Interpretation) :
sig val result : a I.tc end

end

type ’a repr = (module Repr with type a = ’a)

val show : ’a. ’a repr -> ’a -> string

Our examples already hinted at the generic programming. Our hybrid
numbers contained the representation of the type of the value, in the
constructors Int or Flo, and the values themselves. But we can
separate the two. By “really generic” (as opposed to the use of
objects), we specify the type representation without committing to
any particular interpretation. There are no methods for show or add in
Repr. Rather, Repr receives the interpretation from the user and
applies it. A generic function such as show takes a type representation
s repr and supplies the Interpretation argument to obtain a
function whose type involves s. Please see the paper and the code for
more detail.

27

Outline

GADT Introduction

Leibniz Equality

Rising up the ranks

Injectivity?

Implementation of Leibniz Equality

Generic Programming

I Conclusions

28

What else

I Existentials via first-class modules, including existentials
over higher-kinded types

I Leibniz equality
I Common examples of GADTs: typed formatting, typed

interpreter
I A generic programming library (EMGM-like)
I Towards open GADTs: extensible evaluator for a typed

object language

What else is there? The accompanying code also talks about these
issues.

29

Conclusions

First-class modules
I bring type constructors, setting the way for Fω
I represent existentials directly
I permit higher-rank and higher-kind polymorphism
I offer “generic programming for OCaml masses”

GADTs in OCaml

+ value-restricted polymorphism

- limited injectivity

Interesting things are possible, but not convenient

http://okmij.org/ftp/ML/first-class-modules/

http://okmij.org/ftp/ML/first-class-modules/

First-class modules make type-constructors almost first-class and
permit abstraction over type constructors (e.g., quantification over
them). Quantifying over type constructors gives us polymorphism of
higher-kind. We get on the road to Fω. We can define the genuine
Leibniz equality and so implement GADTs modulo injectivity.
First-class modules directly express existentials, which are often
needed for GADT programming. We can instantiate type variables
with module types containing existentials and universals, which gives
us higher-rank polymorphism.
We see overall pattern: restricted polymorphism, restricted at the
value level so to speak: the type may be polymorphic, like our
collections, but only some instances of that type can really be created.
Not all instantiations of a type schema are populated types.
Injectivity, alas, holds only for ‘weak’ GADTs.
Overall conclusion: we can do interesting things, at the cost of lots of
boilerplate and contorted code. Hopefully the users will notice the
first part and the OCaml team will especially notice the second part of
the conclusion.

	GADT Introduction
	Leibniz Equality
	Rising up the ranks
	Injectivity?
	Implementation of Leibniz Equality
	Generic Programming
	Conclusions

