
Iteratees

http://okmij.org/ftp/Streams.html

FLOPS 2012
Kobe, Japan May 24, 2012

Iteratee IO is a style of incremental input processing with precise
resource control. The style encourages building input processors from
a user-extensible set of primitives by chaining, layering, pairing and
other modes of compositions. The programmer is still able, where
needed, to precisely control look-ahead, the allocation of buffers, file
descriptors and other resources. The style is especially suitable for
processing of communication streams, large amount of data, and data
undergone several levels of encoding such as pickling, compression,
chunking, framing. It has been used for programming
high-performance (HTTP) servers and web frameworks, in
computational linguistics and financial trading.
We exposit programming with iteratees, contrasting them with Lazy
IO and the Handle-based, stdio-like IO. We relate them to online
parser combinators. We introduce a simple implementation as free
monads, which lets us formally reason with iteratees. As an example,
we validate several equational laws and use them to optimize iteratee
programs. The simple implementation helps understand existing
implementations of iteratees and derive new ones.

2

What are iteratees and how many of them

Google search on ’iteratee’

Just what are Iteratees and how many? Let’s ask Google. Google also
shows the related search terms: ‘haskell iteratee tutorial’, ‘iteratee
scalaz’, ‘iteratee play’, ‘iteratee clojure’. Iteratee is a new word, so all
these references do bear on the subject of the talk. Iteratee seem to
have something to do with Web frameworks (and what isn’t
nowadays), and they are supposed to be difficult to understand.
There are also lots of flavors and variations. I can’t comment on all or
even several of them for the lack of time, or familiarity. What I can
try to do is to give an overview and a few general principles, and show
how to reason with Iteratees. You can then write your own
implementation or explanation, adding to the Google count.

3

Outline

1. What is Iteratee IO
contrast with Lazy and Handle IO

2. Can you reason with it
online parser combinators and equational laws

3. Concluding remarks

We first describe Iteratee IO intuitively, and then formally.

4

A veneer and the real thing

import IterateeM

type R e m = ...
newtype L e m1 m2 = ...

We use an ‘industrial strength’ IterateeM library, one of many iteratee
libraries. I put a simple veneer, simpler than the one in the paper.
The types R and L, which we will see in abundance below, and
functions of that type belong to the veneer, which is a wrapper around
the IterateeM library. The veneer can be adjusted for other libraries.

5

Count whitespace: Lazy

cws` :: String → Int
cws` ”” = 0
cws` (c: str) | isSpace c = 1 + cws` str
cws` (: str) = cws` str

run fname = readFile fname �= print ◦ cws`

We start with a trivial example: counting white space characters in a
file. We first show the Lazy IO example in idiomatic Haskell, with the
standard pattern-matching on a string. (Actually, we could do better,
and we will.) If the first character of the string is the whitespace, the
total number of whitespace is one more than the number of
whitespace characters in the tail of the string. The code clearly
expresses the pure, mathematical function. There is no IO.

5

Count whitespace: Lazy

cws` :: String → Int
cws` ”” = 0
cws` (c: str) | isSpace c = 1 + cws` str
cws` (: str) = cws` str

run fname = readFile fname �= print ◦ cws`

Where does the IO happen?
I readFile ?
I cws` ?

Lazy IO is like mmap

Where does the IO happen in this code? It may seem IO happens in
readFile, which reads the whole file into memory string first. We then
count the whitespace and print the result. Only that’s not how it
works: reading happens on demand, in cws` . The counting hence
happens in constant memory – which is the great advantage of Lazy
IO, akin to memory-mapped IO. However, executing IO within a
supposedly ‘mathematical’ function does seem odd. And it is, as we
shall see soon.

6

Count whitespace: Handle

cwsh :: Handle → IO Int
cwsh h = loop 0
where
loop n = try (hGetChar h) �= check n
check n (Right c) = loop (if isSpace c then n+ 1 else n)
check n (Left e) | Just ioe ← fromException e,

isEOFError ioe = return n
check (Left e) = throw e

run fname =
print =�
bracket (openFile fname ReadMode) hClose cwsh

Here is the idiomatic C code – still written in Haskell, with a
handle-based IO. We now differentiate EOF from other IO errors: we
could not do that with the Lazy IO. We could even recover from some
errors (like file locking errors). The code is much more explicit – with
error handling and ensuring that the handle is always closed – but is
still quite simple. Only one line in that code deals with the counting
of the whitespace characters; the others are the ‘boilerplate’.

7

Count whitespace: Iteratee

cwsi :: Monad m ⇒ R Char m Int
cwsi = loop 0
where
loop n = getchar �= check n
check n (Just c) = loop (if isSpace c then n+ 1 else n)
check n Nothing = return n

type R e m = Iteratee e m
getchar :: Monad m ⇒ R e m (Maybe e)
instance Monad m ⇒Monad (R e m)

Here is the Iteratee IO code. It has the overall look of the Handle IO:
getting the current character and checking it. The code is
higher-level: for example, EOF and other IO errors are handled as
before, but out of the way.

7

Count whitespace: Iteratee

cwsi :: Monad m ⇒ R Char m Int
cwsi = loop 0
where
loop n = getchar �= check n
check n (Just c) = loop (if isSpace c then n+ 1 else n)
check n Nothing = return n

type R e m = Iteratee e m
getchar :: Monad m ⇒ R e m (Maybe e)
instance Monad m ⇒Monad (R e m)

getchar vs. System.IO.getChar vs. List.head

We use R as a synonym for Iteratee. First of all it’s shorter that
Iteratee, and space is at a premium on slides. But there is a different
reason, as we shall see. Our getchar is the simplest iteratee, which
does what it name suggests. It is like getChar of the standard IO
library. The type R e m a says that getchar is an iteratee that
consumes a stream of elements e and produces, without any effects,
either e or Nothing. So, getchar looks like taking the head of the
list. Iteratees form a monad, letting us combine them into a bigger
code, for the loop.

8

Count whitespace: Iteratee

cwsi :: Monad m ⇒ R Char m Int
cwsi = loop 0
where
loop n = getchar �= check n
check n (Just c) = loop (if isSpace c then n+ 1 else n)
check n Nothing = return n

run fname = print =� fileL fname ~ cwsi

type R e m = Iteratee e m
getchar :: Monad m ⇒ R e m (Maybe e)
instance Monad m ⇒Monad (R e m)
fileL :: FilePath → L Char IO IO

To run the iteratee code, we hook the iteratee, the consumer, with a
producer of the stream, e.g., fileL. Our fileL (see its type) turns a file
into a stream of bytes, reading it incrementally. IO happens in fileL,
not during the counting (getchar’s type shows it does no IO.)
Counting requires no more effects than reading, hence IO is repeated
twice in fileL’s type. Our fileL takes care of closing the file. No
bracketing is needed any more.

9

Hook-ups

Lazy IO

readFile fname �= (\ str → print ◦ cws` $ str)

Handle IO

do
h ← openFile fname ReadMode
r ← cwsh h
hClose h
return r

Iteratee IO

fileL fname ~ cwsi

Let’s compare how we hook-up data producers with consumers in all
three methods. Handle IO uses a handle to represent an open file.
Lazy IO does the same: str is pretty much like a handle. A handle
represents a resource that has to be accounted for and promptly
disposed of. We have to make sure to close the handle, or to beseech
GC to do it for us, not too late.

9

Hook-ups

Lazy IO

readFile fname �= (\ str → print ◦ cws` $ str)

Handle IO

do
h ← openFile fname ReadMode
r ← cwsh h
hClose h
return r

Iteratee IO

fileL fname ~ cwsi

What you do not have, you cannot abuse

There are no such worries with iteratees however: the “handle” is
implicit, and so there is nothing to leak. What you do not have, you
cannot abuse.

10

Better count whitespace: Lazy

cws` :: String → Int
cws` = length ◦ filter isSpace

run fname = readFile fname �= print ◦ cws`

Lazy IO permits a far more elegant solution. It is a one-liner, using
the standard Prelude functions on lists. We filter only whitespace
characters, and count them.

11

Better count whitespace: Iteratee

cwsi :: Monad m ⇒ R Char m Int
cwsi = filterL isSpace ~ count i

run fname = print =� fileL fname ~ cwsi

count i :: Monad m ⇒ R e m Int
filterL :: Monad m ⇒ (e → Bool) →L e m (R e m)

Iteratee IO affords the same elegance. count i is like List.length,
counting items in a stream. filterL is what it sounds like, the analogue
of List.filter. Its type says it is a stream producer on one end and a
consumer on the other end.

12

Applications and compositions

R Char Int︷ ︸︸ ︷
fileL fname ~ (filterL isSpace ~ count i)

(fileL fname } filterL isSpace) ~ count i

︸ ︷︷ ︸
L Char IO IO

~
}

=
$

◦

Let’s look more closely at the two-sided nature of filterL. Before we
counted the whitespace as in the first expression, connecting the
count j consumer with filterL to build a bigger consumer, of the
unfiltered stream of characters. We connect that latter consumer with
the stream producer fileL. We also can do the other way around. We
combine a producer of the raw stream with filterL to get a bigger
producer, of the filtered stream. We hook up the result with the
counting consumer. The iteratee composition operators indeed look
and feel like functional application and composition.
With Lazy and Handle IO, the producers are provided by the run-time
library and can’t be extended. With Lazy and Handle IO, we only
build consumers. Iteratee IO offers a symmetric approach, letting us
build either consumers or producers, depending on what suits us.

13

THE count: Lazy

ct` :: String → Int
ct` = length ◦ filter (== ”the”) ◦ words

run fname = readFile fname �= print ◦ ct`

type Word = String
words :: String → [Word]

A more elaborate problem: counting the occurrences of the word
“the” (assuming the input is text with words of bounded size). We
must count “the” as the word by itself, not being a part of another
word. That is, in order for “the” to be counted, the character before
and after (if exist) must be whitespace.
The Lazy IO code again clearly expresses the algorithm: we split the
stream into words, filter “the”, and count.

14

THE count: Handle

cth :: Handle→ IO Int
cth h = getchar�= s1 0
where
s1 n (Just c) | isSpace c = getchar�= s1 n
s1 n (Just ’ t’) = getchar�= st n
s1 n (Just) = getchar�= sskip n
s1 n Nothing = return n

st n (Just ’ h’) = getchar�= sth n
st n x = sskip n x

sth n (Just ’ e’) = getchar�= sthe n
sth n x = sskip n x

sthe n (Just c) | isSpace c = getchar�= s1 (n+ 1)
sthe n Nothing = return (n+ 1)
sthe n = getchar�= sskip n

sskip n Nothing = return n
sskip n (Just c) | isSpace c = getchar�= s1 n
sskip n = getchar�= sskip n

getchar :: IO (Maybe Char)
getchar = try (hGetChar h)�= \c→ case c of

Right x → return $ Just x
Left e | Just ioe ← fromException e,

isEOFError ioe → return Nothing
Left e → throw e

run fname =
bracket (openFile fname ReadMode) hClose $ \h→
cth h �= print

Here is complete Handle IO code. You can’t see the code because the
font is too small. Making the font bigger won’t make the code more
understandable, I’m afraid. It is a mess: an encoding of a state
machine.

15

THE count: Iteratee

cti :: Monad m ⇒ R Char m Int
cti = wordsL ~ filterL (== ”the”) ~count i

run fname = print =� fileL fname ~ cti

wordsL :: Monad m ⇒ L Word m (R Char m)

The Iteratee IO does the same stream processing as Lazy IO,
converting one stream to another (characters to words, words to
filtered words).

16

THEs count: Lazy

run fnames = mapM readFile fnames �= print ◦ ct` ◦ concat

Let us count the occurrences of the word “the” in a sequence of files
assuming the files are concatenated together. Therefore, we will count
the word ‘the’ if the letter ‘t’ is in one file but ‘he’ is in the next one.
With Lazy IO we re-use the previously written counting function
ct` . We will pass it a string that is the concatenation of files’
contents. The code is elegant.

16

THEs count: Lazy

run fnames = mapM readFile fnames �= print ◦ ct` ◦ concat

I reading is incremental
I N open files

The files are read incrementally; the second file will be read only after
the first one finished. Alas, we have to open all of the files first! The
readFile action, which opens the file and prepares it for lazy reading,
is performed first. Therefore, we need as many descriptors as there
are files in the fnames list. If the list is obtained from scanning a
directory tree, we may run out of file descriptors! That is particularly
disturbing since we really need only one file descriptor, opening and
closing it as we go. We get the first intimation how Lazy IO
mis-manages resources – sometimes taking much more than needed,
and giving the programmer no facilities to control the resources.

17

THEs count: Handle

The first approximation:

run fnames = mapM counter fnames �= print ◦ sum
where counter fname =

bracket (openFile fname ReadMode) hClose cth

I reading is incremental
I 1 open file at a time
I does not quite work

We only need one file descriptor for the whole operation: the next file
is opened only after the previous file is closed. Alas, this solution is
deficient since EOF is counted as a word terminator. We can’t handle
the case of the word ‘the’ split across the files. We have to re-write
our state machine to perform an action upon the detection of EOF to
re-associate the handle with another file. This re-writing is left as an
exercises to the reader, to drive down the point of how really low-level
Handle IO is.

18

THEs count: Iteratee

run fnames = print =�
foldr1 mappend (map fileL fnames) ~ cti

I reading is incremental
I 1 open file

Mappending producers concatenates their sources

The iteratee code again looks pretty much like Lazy IO code.
However, only one file descriptor is used for all processing. fileL prints
the debugging message when the file is opened and closed. We then
clearly see that, unlike Lazy IO, only one file is open at any given
time.

19

THE whitespace count: Lazy

run fname = do
str ← readFile fname
print (cws` str , ct` str)

I Looks great! Code reuse!

I Not incremental

To count both “the” and the whitespace, we just combine the
previously written counters. Looks great!

19

THE whitespace count: Lazy

run fname = do
str ← readFile fname
print (cws` str , ct` str)

I Looks great! Code reuse!
I Not incremental

Alas, it doesn’t work great! Now, the whole file is loaded in memory.
The processing is no longer incremental. We have come across one of
many surprises of Lazy IO. It is not modular; it is not compositional,
if we care about complexity or resource consumption..

20

THE whitespace count: Iteratee

run fname =
print =� fileL fname ~ (cwsi ‘ en pair ‘ cti)

en pair :: Monad m ⇒ R e m a → R e m b → R e m (a,b)

Like Lazy IO, we re-use the previously written counters, pairing them.
Unlike Lazy IO, the processing remains incremental. As we read a
block from file, we send the block to two iteratees for handling.

21

THE whitespace count prefix: Lazy

Early termination

run n fname = do
str0 ← readFile fname
let str = Prelude.take n str0
print (cws` str , ct` str)

We now count the occurrences of the word “the” and the white space
within the prefix of the stream of the size at most N. The example is
abstracted from reading HTTP request content with the explicitly
specified Content-Length. We should not attempt to read even a
single byte after N since the web client expects the reply first, before
it will send the next request. If we attempt to read ahead after N
bytes, the deadlock ensues.

21

THE whitespace count prefix: Lazy

Early termination

run n fname = do
str0 ← readFile fname
let str = Prelude.take n str0
print (cws` str , ct` str)

I Not in constant memory
I Leaking file descriptor (scarce resource)
I Can deadlock – and does, in practice

Reading is an observable effect

As before this code does not run in constant memory. There is
another problem: since we may read only a part of the file, the file
descriptor will not be closed (until a finalizer is run, which may
happen very late). There is a real danger of running out of file
descriptors (which regularly happens in practice with Lazy IO). There
is the third problem: the run-time system may speculatively
read-ahead, at any time and for any reason. The programmer has no
way whatsoever to control this read-ahead or even be informed about
it. Therefore, deadlock may happen (and does routinely happen in
practice, when using lazy IO for interactive services). Lazy IO was
designed to give the impression that IO is not even happening. Alas,
when dealing with request-response servers and multiple IO
operations, even reading is an observable effect.

22

THE whitespace count prefix: Iteratee

run n fname =
print =� fileL fname ~

takeL n ~ (cwsi ‘ en pair ‘ cti)

takeL :: Monad m ⇒ Int → L e m (R e m)

I in constant memory, incremental
I reading only n bytes and not a byte longer
I the file is closed immediately afterwards

The primitive takeL, like its List’s namesake, ensures that no more
than n characters are read; afterwards, it will not speculatively ask for
any further file data.
The overall code looks quite like Lazy IO. Now it actually works as
intended.

23

Taste of the equational laws

Composition

strL (s1 ++ s2) ≡ strL s1 ‘ mappend‘ strL s2

Chaining

strL (s1 ++ s2) ~ (i �= f) ≡
(strL s1 ~ i) �= \x → strL s2 ~ f x

(provided i properly recognizes s1)

Zero

failure �= f ≡ failure

Right distributivity

i �= \x → (k1 x C k2 x) ≡ (i �= k1) C (i �= k2)

Please see the paper for details and applications

Let me give you the taste of equational laws of Iteratees. We consider
iteratees as parsers. The laws justify the modular construction of
iteratee parsers, treating them as parser combinators.
We exposit programming with iteratees, contrasting them with Lazy
IO and the Handle-based, stdio-like IO. We relate them to online
parser combinators. We introduce a simple implementation as free
monads, which lets us formally reason with iteratees. As an example,
we validate several equational laws and use them to optimize iteratee
programs. The simple implementation helps understand existing
implementations of iteratees and derive new ones.

24

Frequently Questioned Answers

Can Iteratee IO really:
I do binary IO
I arbitrarily change position in stream: fseek
I write to a file, with exception safety: iterFile
I split the stream (process it in parallel)
I process several files together, out of lockstep: merge

http://okmij.org/ftp/Streams.html

Here are a few answers that people frequently find hard to believe.
Yes, really, you can do all that. Please see the above URL for details,
which are not in the paper.

25

Conclusions

Iteratee IO is

I incremental IO with precise resource control
I compositional:

assembling consumers or producers
I especially good for communication streams and BigData
I a library of incremental parsing combinators and

can be reasoned as such

25

Conclusions

Iteratee IO is

I incremental IO with precise resource control
I compositional:

assembling consumers or producers
I especially good for communication streams and BigData
I a library of incremental parsing combinators and

can be reasoned as such

Iteratee IO is a strict lazy IO

A reviewer of the paper wrote in his summary that the Iteratee IO
can somewhat perversely be described as ‘strict Lazy IO’. Iteratee IO
is what Lazy IO was meant to be.

26

Parting thought

“We should have some ways of coupling programs like
garden hose – screw in another segment when it becomes
necessary to massage data in another way. This is the way
of IO also.”

M. D. McIlroy. October 11, 1964.
http://doc.cat-v.org/unix/pipes/

http://doc.cat-v.org/unix/pipes/

Almost fifty years later, we are coming to such a way of coupling
programs and doing IO.

	What is Iteratee IO
	Can you reason with it
	Concluding remarks

