Programming as collaborative reference (full presentation)

Oleg Kiselyov and Chung-chieh Shan

We argue that programming-language theory should face the pragmatic fact that humans
develop software by interacting with computers in real time. This interaction not only relies
on but also bears on the core design and tools of programming languages, so it should not be
left to Eclipse plug-ins and StackOverflow. We further illustrate how this interaction could
be improved by drawing from existing research on natural-language dialogue, specifically on

collaborative reference.

The users and implementations of modern programming
languages are stymied by a communication bottleneck:
Programs are so long that the need to express them in full
detail imposes a heavy cognitive and physical burden even
if one already understands the exact algorithm intended.
Whenever you’re programming and struggle to enter an
expression even though it would be obvious to another
programmer looking over your shoulder what you mean,
that’s an instance of this bottleneck in the human-to-
computer direction.

It would be excusable if the reason the program we
want takes n bits to express is that there are 2™ — 1 other
programs that we might want. But the vast majority of
well-formed programs in today’s programming languages
are undesirable, and many desirable programs are equiv-
alent. If only we can just input a desired program by
entering the number of lexicographically preceding de-
sired programs! But that’s intractable for humans and
computers alike. Abstractions and types may reduce this
communication burden somewhat, but the boilerplate
necessary to access highly parametrized abstractions and
the annotations necessary to help type inference along
contribute to the problem themselves.

We face a similar problem when talking to fellow human
beings. Most of the meanings we intend to convey using
natural-language utterances would be excruciating to spell
out fully in any language. For example, pronouns (such
as “him”) and descriptions (“the president”) are on one
hand much more ambiguous than proper names (“Barack
Obama”) and explicit variable names (“z”), but on the
other hand more concise as well as easier to process for
speakers and hearers alike. To take another example, the
familiar question “Can everyone hear me?” is typically
spoken to ask about everyone in the room rather than
everyone in the world [4]. It scantly helps to rephrase
the question to “Can everyone in the room hear me?”—
Which room? (Do you mean the city of Philadelphia or
the movie Philadelphia?)

Despite such odds, humans manage to communicate all
the time—whether to name a room, a proof, or a program.
Key to this feat are

e our use of context, which narrows down the mean-
ings that make sense to convey, and

e our exchange of feedback, which makes it unneces-
sary to get an utterance right the first time or to
ever give a complete explicit description.

Programming languages today already use some context
to lessen the burden of communication; examples include
scope, type inference, and overloading resolution. De-
velopment environments today also provide feedback in
rudimentary forms such as continuous compilation and
identifier completion. Comparing these facilities against
human communication shows that it is possible for us
to program more concisely, especially if the language is
designed with context and feedback in mind. And pro-
gram more concisely we must, as we build larger systems
and check stronger properties, which might be expressed
today in fancy type systems that require many (often
“obvious”) annotations.

For example, whenever you want to talk to me about
something or somebody, maybe someone you spot across
the stadium, we usually manage to agree on the same
person pretty quickly, even though we haven’t agreed on a
numbering of all objects ahead of time. The psychologists
Clark and Wilkes-Gibbs [2] point out that this task is
very interactive—mnot at all like taking one shot to write
out a clear noun phrase.

A: the guy reading with, holding his book to the left.
B: Okay, kind of standing up?

A: Yeah.

B: Okay.

Clark and Wilkes-Gibbs study this collaborative reference
task by asking experiment subjects to perform a matching
task in pairs. Part of their study classified the moves
people tend to make and identified how they signal and
anticipate these moves.

Programming is a human-computer collaboration whose
goal is also reference. We are not alone to suggest easing
this daunting goal by making the object of reference
not just the raw code but also what it does and why it
works. A flexible interaction can take advantage of how
few programs make sense to relieve humans from reading
and writing most boilerplate and annotations. Perhaps,
what a program does would be expressed roughly by a
type, and why it works would be expressed by a type
derivation; like Conor McBride, we “think of types as
warping our gravity, so that the direction we need to
travel becomes ‘downhill’.”

What’s tricky is that the intended program is seldom
the exact minimum. For example, given a signature like
Haskell’s Show or Ord, sometimes the implementation you
want is not the default instance that type classes give you,



but almost! So close, yet so far to have to compose all
the functor invocations by hand! So the ideal trip to the
desired program is like

e Marble Madness;
e filling in holes in Agda,;

e IntelliSense, not only constrained by types, but also
liberated by completing complex expressions;

e input method editors; and

e pair programming or code review, which goes faster
and more smoothly as participants develop a shared
vocabulary like between Clark and Wilkes-Gibbs’s
director and matcher.

It is crucial to allow decisions to be made (facets to be
specified) in many different ways during the collaboration.

That’s not all. We wouldn’t be here if we just wanted to
suggest that HCI researchers and IDE builders take more
context into account in the interfaces they are already
building. Neither do we want to program computers using
an existing natural language [I].

It turns out that implementing collaborative reference,
whether in natural languages or in programming lan-
guages, requires some tools familiar to you such as seman-
tics and logic:

e Participants in collaborative reference maintain
their discourse context by updating a virtual score-
board with constraints, or logical statements about
the intended referent.

e The task often spawns sub/meta-tasks to clear up
collateral ambiguity, whether about a constituent
subroutine, a constraint predicate, or a discourse
move.

e Previously established referents are added to a vo-
cabulary that, unsurprisingly, looks a lot like a type
environment.

e The pervasive uncertainty can be expressed using
nondeterministic programming and managed using
compositional heuristics for search through proba-
bility distributions with the programmer’s guidance.

DeVault’s COREF dialogue agent [3] can play both
the director role and the matcher role in a task like
Clark and Wilkes-Gibbs’s experiment task. To show
concretely that the approach is viable, we will play a
one-minute video of COREF in action (http://www!
cs.rutgers.edu/~ccshan/devault-contribution/
example-coref-matches.mp4).

An initial attempt at programming by collaborative
reference may target the problem of (overlapping) over-
loading resolution or (undecidable) type inference. The
key is to identify a space of possible discourse moves,
including the space of programs that make sense and
a variety of strategies that both the director and the
matcher can use to describe a candidate they have in
mind and distinguish it telegraphically from competitors
in play. For example, instead of insisting that all overload-
ing be unambiguous, a programming language can resolve
overloading interactively if there is enough doubt as to
which referent the programmer intends. The referent that
results from this collaboration would then become part
of the program text (in particular, part of the indezical
content [5] that any copy-and-paste operation would op-
erate on), so meta-theorems such as type safety would
still hold.

[1] Allen, James F., Nathanael Chambers, George Ferguson,
Lucian Galescu, Hyuckchul Jung, Mary D. Swift, and
William Taysom. 2007. PLOW: A collaborative task learn-
ing agent. In AAAI-2007: Proceedings of the 22nd national
conference on artificial intelligence, 1514-1519. The Ameri-
can Association for Artificial Intelligence, Menlo Park, CA:
AAAT Press.

[2] Clark, Herbert H., and Deanna Wilkes-Gibbs. 1986. Refer-
ring as a collaborative process. Cognition 22(1):1-39.

[3] DeVault, David. 2008. Contribution tracking: Participating

in task-oriented dialogue under uncertainty. Ph.D. thesis,
Rutgers University.

[4] von Fintel, Kai. 1994. Restrictions on quantifier domains.
Ph.D. thesis, Department of Linguistics, University of
Massachusetts.

[5] Kaplan, David. 1989. Demonstratives: An essay on the
semantics, logic, metaphysics, and epistemology of demon-
stratives and other indexicals. In Themes from Kaplan,
ed. Joseph Almog, John Perry, and Howard Wettstein,
chap. 17, 481-563. New York: Oxford University Press.


http://www.cs.rutgers.edu/~ccshan/devault-contribution/example-coref-matches.mp4
http://www.cs.rutgers.edu/~ccshan/devault-contribution/example-coref-matches.mp4
http://www.cs.rutgers.edu/~ccshan/devault-contribution/example-coref-matches.mp4

	References

