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Abstract

From the outset, lambda calculus represented natural numbers through iterated application. The suc-
cessor hence adds one more application, and the predecessor removes. In effect, the predecessor
un-applies a term—which seemed impossible, even to Church. It took Kleene a rather oblique glance
to sight a related representation of numbers, with an easier predecessor. Let us see what we can do
if we look at this old problem with today’s eyes. We discern the systematic ways to derive more
predecessors—smaller, faster, and sharper—while keeping all teeth.

1 Introduction

Lambda calculus is banal in its operation—and yet is an unending source of delightful
puzzles. One of the first was the predecessor: applied to the term representing a natural
number n + 1, it should reduce to the representation of n. When the number n is represented
as an n-times repeated application, the predecessor amounts to an un-application—which
is not the operation lambda calculus supports. As Church was about to give up the hope
of expressing arithmetic, his student Kleene was getting his wisdom teeth extracted, and
under anesthetic (or so Barendregt, 1997 says) foreglimpsed the solution.

The tooth-wrenching story and Kleene’s predecessor have become a part of the
Functional Canon, told and retold in tutorials and textbooks, and invariably called
“very tricky”. I can sympathize, having searched for, and eventually finding, a different
predecessor back in 1992. Incidentally, I also had a tooth extracted that year.

This article shows that by looking at the puzzle as a representation-change problem we
see, in plain sight, more and more solutions—insightful, easier to explain and to write
down on a single line, and to extend beyond numbers. We even spot an un-application.

2 Preliminaries

In this paper, we use the pure lambda calculus, whose expressions (also called terms)
are made only of variables, abstractions, and applications, as defined below. (The
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meta-variable e stands for an arbitrary expression and meta-variables x, y, z stand for
arbitrary variables; e1[x := e2] is the capture-avoiding substitution of x with e2 in e1):

Variables x, y, z ::= single letters, possibly with sub- and superscripts, excluding
e but including x, y, z

Expressions e ::= x | λx.e | e e

Reductions �β (λx.e1) e2 �β e1[x := e2]

We take application to be left-associative, which lets us write repeated applications,
such as (e1 e2) e3 without parentheses. Expressions like λx.e1 e2 are to be understood as
λx.(e1 e2): the body of an abstraction extends as far to the right as possible; parentheses
delimit it if needed. Sometimes we write repeated abstractions like λx.λy.e as λxy.e.

We do not use types. Incidentally, predecessor, in any form, cannot be represented in
simply typed lambda calculus, in principle: Statman (1979).

We write e1� e2 for the compatible closure of �β : the smallest relation containing
�β with the property that if e1� e2 then likewise (λx.e1)� (λx.e2), e e1� e e2 and
e1 e� e2 e. We write�∗ for the transitive reflexive closure of� and say that e1 reduces
to e2 just in case the relation e1�∗ e2 holds. The reflexive, transitive, compatible, and
symmetric closure of �β (i.e., �β congruence) is written

.=; the expressions so related
are called equal.

The pure lambda calculus has no constants or operations. To make its expressions easier
to read and write, we shall refer to some terms by short and meaningful names. The name
assignment (i.e., definitions) and the names themselves are not part of the calculus but a
mere syntax sugar.1 Here are sample definitions, for the expressions representing Booleans,
ordered pairs, and composition:

id := λx.x pair := λx.λy.λp.p x y

true := λx.λy.x fst := λp.p true

false := λx.λy.y snd := λp.p false

and := λp.λq.p q false comp := λfg.λx.f (g x)

As further notational convenience, we write λx.f (g x) as f ◦ g and λp.p e1 e2 as (e1, e2).2 It
is easy to see that fst (e1, e2)

.= e1 and snd (e1, e2)
.= e2 for arbitrary e1 and e2—as expected

of pairs. We define the size of a term as the total count of its variables, applications, and
lambdas. For example, the size of pair is 8.

The symbol := gives the name to the term on its right-hand side as written (modulo the
renaming of bound variables, invoked implicitly as needed). It is common to name only
normal forms of terms, noting exceptions explicitly. However, we often want to convey
how the defined term is put together, from applications of other terms. In such cases, we

1 “. . . the definitions are not part of our subject, but are, strictly speaking, mere typographical conveniences.. . . In
spite of the fact that definitions are theoretically superfluous, it is nevertheless true that they often convey
more important information than is contained in the propositions in which they are used. . . . The collection of
definitions embodies our choice of subjects and our judgement as to what is most important. Secondly, . . . the
definition contains an analysis of a common idea, and may therefore express a notable advance.” (Whitehead
& Russell, 1910) (p. 12)

2 (e1, e2) is clearly equal to pair e1 e2. Also, (e1, e2) is in normal form whenever e1 and e2 are.
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use the notation name :
.= e, to be read as giving name to the normal form of e, thereby

asserted to exist.
Natural numbers are commonly represented in lambda calculus by means of an iterated

application as shown below. We notate these so-called Church numerals as cn, for the
numeral representing the number n:

c0 := λf .λx.x c1 := λf .λx.f x c2 := λf .λx.f ( f x) . . .

We will also write cn as λf .λx.f (n)x, taking f (n)x to mean the n-times repeated application
of f to x. A simple inductive demonstration, or just writing it out, shows that:

λfx.f (n+1)x
.= λfx.cn+1 f x

.= λfx.cn f ( f x)
.= λfx.f (cn f x) (1)

which leads us to the successor—a term whose application to cn reduces to cn+1. Equation
(1) gives two such terms (we will be using the second one: the choice is arbitrary.):

succ′ := λn.λfx.n f ( f x) succ := λn.λfx.f (n f x)

The problem is to find the predecessor—a term pred such that the application pred cn+1

reduces to cn. (What should be the result of pred c0 is an open choice; often it is c0.)
We shall derive many predecessors, some known, most new, by contemplating the koan

(*) below and following three trails of thought as they unfold. Finally, in Section 8, we look
back, with the map at hand, discerning the motif and further connections and extensions.
We will be stressing intuitions rather than formality. Formal statements and outlines of the
correctness proofs are collected in Appendix A.

3 The koan

The fundamental tautology of Church numerals is easy to overlook:

cn
.= cn succ c0 (*)

That is, the numeral cn that represents n is the n-times repeated application of the suc-
cessor succ to c0. The deep meaning of this triviality unfolds as we go along; Section 8
summarizes why the name “koan” is fitting.

The paper’s title promises many predecessors. To conveniently deal with variations
without overloading the notation, we introduce “local” definitions name :

.= e, limited in
scope to the section or the explanation block where they appear. The example is immedi-
ately below. Locally defined names are set off in a different font from the ordinary, global
definitions.

As the first step, (*) gives the recipe for other representations of natural numbers—call
them pn:

pn :
.= cn supp p0 n > 0 (**)

This is a definition schema, or a recipe, with supp and p0 as parameters. Since c0 supp p0
.=

p0, the parameter p0 may be regarded as the initial (zeroth) element of the pn sequence. As
to supp, we observe from Equation (1) that:

pn+1
.= cn+1 supp p0

.= supp (cn supp p0)
.= supp pn
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That is, supp acts as the “step function” of the sequence. One may thus say that given
the initial element and the step function, (**) is the closed-form expression for the n-th
element of the sequence defined by these parameters.

Albeit trivial, the above observations lead to interesting results. For example, instanti-
ating the schema (**) with p0 as cm for some m and supp as succ constructs “m-shifted”
numerals p0 := cm, p1 := cm+1, etc. Since pn is cn+m, (**) immediately gives the expression
for adding Church numerals: add := λnm.n succ m. Kleene’s predecessor emerges from the
similar, “half-way shifted”, numerals, as we see next.

Appendix A reveals that (**) is also the recipe for proving properties of thus constructed
pn and, ultimately, the correctness of the predecessors.

4 Kleene’s predecessor

To obtain the Kleene predecessor, we take as pn a point between two consecutive numbers
cn and cn−1 on the number line. It can be represented as a pair (cn−1, cn):

p0 := (c−1 , c0) p1 := (c0 , c1) p2 := (c1 , c2) . . .

Here, c−1 is the term that we want as the result of applying the predecessor to c0—for
example, c0 itself. The successor on those “midpoint numbers” is easy to define

supp :
.= λp.(snd p, succ (snd p)) (2)

With thus chosen supp and p0, schema (**) gives the closed-form expression for pn, from
which we can extract cn−1 as the first component:

pred :
.= λn.fst (n supp p0) (3)

or, in the desugared, normal form:

λn.n (λps.s (p(λxy.y)) (λfx.f (p(λxy.y) f x))) (λp.p (λfx.x) (λfx.x)) (λxy.x) (4)

This is the textbook predecessor (explained, e.g., in the widely used Pierce, 2002). Its size
is 41.

5 More predecessors, generally

In Equation (2), supp receives a pair as the argument but uses only its second component—
hinting that something simpler than a pair might do. A simpler representation does come
when the “half-shifted” numerals of Section 4 are replaced by “down-shifted”. That is, we
now take pn+1 to be cn. We then look for a suitable term p0 to prepend to this p1 , p2 , . . .
sequence as the initial element. The step function supp of the resulting sequence usu-
ally becomes apparent. Then (**) gives the closed expression for the n-th element of the
sequence: pn+1 :

.= cn+1 supp p0. Recalling that pn+1 is actually cn gives what we were
looking for: the way to compute cn given cn+1.

The general way of extending a sequence X (a set, in general) is embedding it in a
longer sequence: the X option construction, which we explore and explain in this section.
In contrast, Section 6 extends the set of Church numerals by relying on specific properties
of its elements.
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X option is the sum data type, with the elements {None} ∪ {Some x | x ∈ X }: the second
component of the union embeds X , whereas None is the extra element. Here

None := λk.λy.y Some := λx.λk.λy.kx (5)

The downshifted numerals pn thus become p0 :
.= None, p1 :

.= Some c0, etc.—in general
keeping in mind Equation (5):

pn k y
.=

{
y if n = 0

k cn−1 otherwise
.=

{
y if n = 0

k (succ(n−1) c0) otherwise
(6)

Thus, pn+1 are not cn themselves but their embedding Some cn, from which one can always
project cn.

The operation supp, to obtain the next pn in the series, is hence:

supp :
.= λp.Some (p succ c0)

which gives, via (**), the closed-form expression for pn+1, from which we extract cn using
Equation (6), eventually obtaining the predecessor as:

λn.(n supp p0) id c0 (7)

or, in the desugared, normal form:

λn.n (λpky.k (p(λnfx.f (n f x))(λfx.x))) (λky.y) (λx.x) (λfx.x) (8)

With size 35, it is a bit shorter than the Kleene predecessor.
Equation (6) points to the more economical embedding:

pnfx := λk.

{
x if n = 0

k ( f (n−1)x) otherwise
(9)

where f and x are some fixed terms: the parameters of the embedding. Clearly, any cn can
be converted to the corresponding pn+1, from which it can be projected back.

The first element and the step function of sequence (9) are thus:

p0fx := λk.x suppfx := λp.λk.k (p f )

which, via the schema (**), gives us the lambda term for pnfx and eventually the
predecessor:

λn.λfx.(n suppfx p0fx) id (10)

or, in the desugared, normal form:

λnfx.n (λpk.k (p f )) (λk.x) (λy.y) (11)

At size 18, it is the shortest predecessor found so far (less than half the size of Kleene’s),
and also the fastest, according to the benchmarks of Table 1. It is mentioned, without
derivation, explanation or proof, in Barendregt & Barendsen (2000, Theorem 3.14), (and
earlier in Barendregt, 1990, Theorem 2.2.14), with a note giving the credit to J. Velmans.3

An independent derivation appears in Kemp (2007, Section 7.4.1). The exposition in this

3 It is possible it was derived in Urbanek (1993). However, the author has not been able to locate that paper.
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section not only explains the term (which leads to the correctness proof in Appendix A)
but also lets one derive such small and fast “predecessors” for other data structures, as we
show in Appendix B for binary trees.

6 More predecessors, specifically

In Section 5, we added a new element to Church numerals using the general X option con-
struction that works for any set X : by embedding X into a “bigger” set, which, besides the
image Some X also contains the extra element None. In this section,we will be constructing
augmented Church numeral sequences by relying on specific properties of the numerals.

As in Section 5, we will be dealing with downshifted numerals p0 := c−1, p1 := c0, p2 :=
c1, etc. This time, however, the sequence p1 , p2 , . . . is not just an embedding of c0 , c1 , . . .
but identical to it. The key is to find such a term c−1 that can be easily distinguished from
all other Church numerals. We have to make use of some invariant of the numerals.

Here is one invariant: for any cn, the application cn id reduces to id: the identity is a fix-
point of Church numerals. As c−1, we chose a term that, when applied to identity, reduces
to something other than the identity, for example, to λx.c0. The constructors of the pn

sequence are thus:

c−1 := λfx.c0 supp :
.= λp.p id (succ p)

which leads, in the already established route, to the predecessor:

λn.n (λp.p id (succ p)) (λfx.c0) (12)

Or, in the desugared, normal form:

λn.n (λp.p (λx.x)(λfx.f (p f x))) (λfxsz.z) (13)

Of size 24, it is nearly half the size of the Kleene predecessor. This was the predecessor
that I found in 1992.

Unfortunately, the test that discriminates c−1 from cn—the application to id—takes lin-
ear in n time to reduce. A straightforward modification makes a constant-time test. We do
not pursue this approach further (but see the accompanying code). Rather, we demonstrate
a different way to look at the augmented Church numerals, taking (*) to the heart. It leads
to, arguably, the most inspiring predecessor, with the elegant correctness proof.

As before, the construction is based on (**) with p0 being c−1 and supp as mere
λp.p succ c1, to be called succ◦. The predecessor of cn is thus the corresponding pn itself:

pred := λn.n succ◦ c−1 (14)

Or, in the desugared, normal form (size 25):

λn.n (λp.p (λcfx.f (cfx))(λx.x)) (λfxsz.z) (15)

The correctness proof is the calculation:

pred cn+1
.= cn+1 succ◦ c−1

.= cn succ◦ ((λp.p succ c1) (λfx.c0))
.= cn succ◦ c0

.= cn succ c0
.= cn
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crucially relying on (*). The key step is the fact succ◦ is itself a successor: succ◦ ci
.=

ci succ c1
.= ci+1 succ c0

.= ci+1 for each i ≥ 0, which again relies on (*), and on Equation
(1). Thus, Equation (14) is an extension of (*) with the “metacircular” successor succ◦,
which behaves just like succ on Church numerals and admits c−1 as minus one.

Perhaps the slightly optimized version of Equation (14) (with composition instead of
applications) brings up the insight with more force:

λn.n (λpf .p (comp f )f )(λfx.id) (16)

Or, in the desugared, normal form (size 21):

λn.n (λpf .p (λgx.f (g x)) f ) (λfxs.s) (17)

7 Un-application

We began by saying that the predecessor is so hard to believe in because it is effectively
an un-application. It seems fitting to end by demonstrating it is indeed the case. In fact, we
will actually derive the predecessor using un-application.

To be sure, lambda calculus has no un-application rule or operation. We may only apply
lambda terms but not examine them. However, lambda calculus can represent, or encode,
all computations, including of itself. The representations can be examined and decon-
structed to our heart’s content. For example, the iterated application f (n)x (for some fixed f
and x) may be represented by the already familiar, from Section 5, X option construction:
None stands for x and Some e represents the application of f to e:

Nonex := λk.x Somex := λa.λk.k a (18)

The definitions are parameterized by x, which makes them smaller than those in Equation
(5).4 Thus, f (n)x is encoded as Some(n)

x Nonex, which we will call pnx in this section; they
are almost the same as pnfx of Equation (9), only with Somex inplace of f , and without the
downshift: pnx corresponds to cn, whereas pnfx of Equation (9) corresponded to cn−1. From
Equation (18), it follows that pnx id reduces to p(n−1)x when n > 0 and to x otherwise—
which is effectively the pattern-matching on pnx.

The construction of pnx from cn—the encoding, or reification (Bawden, 1988; Dybjer &
Filinski, 2002) of cn—is given by (**), or, concretely as:

reifx := λn.n Somex Nonex reflf := fix λs.λp.p (λq.f (s q)) (19)

The decoding, or reflection, recursively interprets pnx, effectively replacing Nonex and
Somex with what they are meant to represent: x and the application of f , respectively.
Here, fix is the fixpoint combinator. Clearly, cn f x

.= reflf (reifx cn) for any n. Because of
fix, reflf has no normal form, unlike all other terms in this paper. We now rub the blemish
away. Contrast the characteristic equality of fix with the consequence of Equation (1):

fix e
.= e (fix e) cm+1 e e′ .= e (cm e e′) (20)

4 Although Somex does not include x, we still subscript it to distinguish from Some—and because it is related
to Nonex, as we see in Section 8.
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One may say, cm+1 is a “finite” approximation of fix, good up to m recursions. To be
precise, if for some e and e1 the term fix e e1 has a normal form, there clearly must exist
the number m such that fix e e1

.= (e(m) e′) e1
.= cm e e′ e1, for an arbitrary e′.

We hence introduce

refl′
f := λm.m (λs.λp.p (λq.f (s q))) e′ (21)

with the property cn f x
.= refl′

f cm (reifx cn) for any m > n. The number n is being reflected,
whereas m drives the reflection. We may even let n itself drive the reflection of its reified
predecessor. The term e′ truly can be chosen arbitrary; as we will see it only comes to
matter when determining the predecessor of c0, which is generally an open choice. It is
simplest to let e′ be a bound variable in scope, such as m.

As we have already said, the pnx encoding lets us pattern-match on it and hence remove
the outer Some constructor if there was any (otherwise, return x). Hence, the predecessor
on pnx numerals is predp := λp.p id. Thus composing reification, predp and reflection
gives us the predecessor on Church numerals as:

λn.λfx.refl′
f n (predp (reifx n)) (22)

Or, in the normal form (size 31):

λn.λfx.n (λs.λp.p (λq.f (sq))) n (n (λak.ka) (λk.x) (λz.z)) (23)

One might think that with the piling up of reflection onto reification, the result would be
awful. Yet predecessor (23) is smaller and faster than the Kleene predecessor (4)—in some
cases, one of the fastest, as we see next.

8 Connections

Let us look back and draw a map, to help in further travel. The seemingly quasi-random
wanderings have all been the variations of the same motif, about encodings, data types,
and algebras (with the operations c0 of arity 0 and succ of arity 1.) In particular, everything
seems to revolve around the functor F(X ) := 1 + X . Church numerals and the algebraic
data type type nat = Succ of nat | Zero are the carrier sets of two (isomorphic,
by definition) initial F-algebras for this functor. Then (**) expresses the unique homo-
morphism, from the initial algebra of Church numerals to the algebra with the carrier
set pn.

The functor F(X ) represents the data type X option; its fixpoint, μX .(X option), is none
other than nat. This is the idea behind Equation (19) in Section 7. We have used two
encoding of the X option data type: Böhm & Berarducci (1985) in Equation (5) and Scott–
Mogensen (Mogensen, 1992; Abadi et al., 1993) in Equation (18).

The seemingly trivial (*) appears by the same name in Böhm & Berarducci (1985).
One understands its significance only when rediscovers it for oneself—as it happened to
Wadler5 and the author.6

5 http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00138.html.
6 http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html.

http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00138.html
http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
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Table 1. Size and performance comparison of various predecessors. Equation (4) is the original

Kleene predecessor. The third column shows the number of normal-order reductions to normalize

pred c100. The normalization of Equation (13) did not finish in 5 minutes; the shown number is

obtained by extrapolation. The last two columns show the performance metrics (using the built-in

time) of evaluating (((pred c10000) incr) 0) on Petite Chez Scheme Version 8.4 on AMD64.

Here, incr is defined as (lambda (n) (+ 1 n))
Reductions (((pred c10000) incr) 0)

Predecessor Size to normalize pred c100 time (ms) memory (MB)

Equation (4) 41 604 1281 3207
Equation (8) 35 603 4 2.1
Equation (11) 18 205 3 0.6
Equation (13) 24 > 4 ∗ 2100 1348 3127
Equation (15) 25 14757 1651 4675
Equation (17) 21 9906 1312 3128
Equation (23) 31 506 5 1.5

The pn number representation, completely specified per (**) by p0 and supp, is called
“numeral system” in Barendregt (1981, Section 6.4) (Numeral systems are required to also
possess the zero-test operation, which is not needed for our development. The exercises
to its Section 6 discuss other numeral systems, including binary.) Barendregt (1981) intro-
duces one particular pn, denoted �n� in his book (Definition 6.2.9), with the straightforward
predecessor, and the isomorphism to cn witnessed by lambda terms. Therefore, the prede-
cessor on �n� can be “conjugated” to give the predecessor on Church numerals (Corollary
6.4.6). This is the essence of the approach we exposed in Section 7. The requirement that
the isomorphism between pn and cn be witnessed by lambda terms is, however, too strong:
Section 7 gets by without it. Its reflf and reifx express only a part of the isomorphism, and
their composition is not the identity. As another difference, refl′

f does not use the fixpoint
combinator and hence has a normal form. All our predecessors have normal form.

Table 1 compares the predecessors. Although the performance of lambda calculus
predecessors is not something one would lose sleep over (except for the author), we eval-
uate it as well, as the number of normal-order reductions to normalize pred c100 (giving
c99). These numbers in the table are computed by the embedding of lambda calculus in
OCaml; the complete code, with more examples, is available at http://okmij.org/ftp/
tagless-final/pred.ml. One should keep in mind that the normal reduction strategy
substitutes expressions that may have redices, with the ever-present danger of exponential
explosion (which indeed occurs in the case of Equation (13)). As a more realistic test, we
show the time and memory it takes to evaluate (pred c10000) and then to convert it to
an integer, on Petite Chez Scheme, a highly optimizing Scheme compiler. All performance
tests used the normal form of the predecessors.

Thus, looking back, the overarching idea has been the construction of an initial alge-
bra for the F(X ) functor. Although isomorphic to the cn initial algebra, it is designed to
have an easily expressible predecessor. In the light of F-algebras, the general approaches
in Sections 5 and 7 now look systematic: The X option construction was not arbi-
trary; it was the representation of the F(X ) functor in question. The general predecessor
approaches thus extend to the Church encoding of any other algebraic data type (initial

http://okmij.org/ftp/tagless-final/pred.ml
http://okmij.org/ftp/tagless-final/pred.ml
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F-algebra)—mechanically: write down the functor, write down the corresponding data
type construction, apply Böhm–Berarducci or Scott–Mogensen encoding following the
steps of Sections 5 and 7, and obtain an efficient predecessor/extractor. Appendix B
illustrates, for binary trees.

The specific approach in Section 6, by its nature, does not generalize so easily. Still, the
predecessors in Section 6, although not particularly useful for anything, are pleasing to the
eye and to the mind—like a real pearl.

9 Conclusions

Our reality may be very much like theirs. All this might just be
an elaborate simulation running inside a little device sitting on

someone’s table.
StarTrek TNG, Episode 6x12, “Ship in a Bottle”

The tricky predecessor turned prosaic, once we have changed the point of view—which
came about from contemplating representations and what they represent. The metacircular
successor in Equation (14) is the case point, of the epigraph as well. With what we know
now about algebraic data types and their representations, the predecessor is no longer a
mystical term requiring alternative states of mind and tooth sacrifices. We have also expe-
rienced the excitement of revisiting the Canon—and the wonder at the delicate behavior
that arises from trite rules.
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A Appendix

Correctness formalities

The correctness of a predecessor term pred is expressed by the following property:

pred cn+1
.= cn ∀n ≥ 0 (A1)

which also states that pred cn+1 has the normal form, viz. cn, and hence can be reduced to
it with the normal reduction strategy. This section outlines the proofs of this property for
the predecessors introduced in this paper.

The proofs are centered around three basic properties of Church numerals: Equation (1),
(*) and the following: Assume f, h, and g are the terms such that h ◦ f

.= g ◦ h. Then

h ◦ (cn f)
.= (cn g) ◦ h ∀n ≥ 0 (A2)

Intuitively, if one can “push” h past one application of f, one can push it past any num-
ber of the consecutive applications of f. These three properties can be demonstrated by
straightforward induction, or algebraically. On the other hand, induction is not needed for
the correctness proofs themselves, below. The proofs are based on equational re-writing
and are calculational in nature.

The general way of constructing a predecessor is given cn+1, first build the term pn+1

using (**) with the appropriate supp and p0. By construction, it should be easy to extract cn

from pn+1; we call the extraction term rfl. All in all, we have the following construction
schema:

pred :
.= λn.rfl (n supp p0) (A3)
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Suppose the following two conditions hold

h ◦ supp .= succ ◦ h h p0
.= c0 where h :

.= refl ◦ supp (A4)

Then, by simple equational reasoning, using Equations (1) and (A2) and (*):

pred cn+1
.= rfl (cn+1 supp p0)

.= rfl (supp (cn supp p0))
.= h (cn supp p0)

.= cn succ (h p0)
.= cn succ c0

.= cn

That is, provided Equation (A4) hold for the chosen supp and p0, the predecessor
constructed according to schema (A3) is correct.

Proving the correctness of a predecessor thus amounts to checking the conditions (A4).
For example, for Kleene’s predecessor (4), p0 is (c−1 , c0), supp is λp.(snd p, succ (snd p))
and rfl is fst. Then h :

.= rfl ◦ supp .= snd. It is easy to see that h p0 reduces to c0 and
h ◦ supp indeed equals to succ ◦ h by doing a couple of substitutions in one’s head (or nor-
malizing both terms and comparing the results—the approach taken in the accompanying
code). The Kleene predecessor is indeed correct. The correctness of Equations (8) and (11)
can be seen just as mechanically.

Predecessors derived in the “specific” way, in Section 6, have specific, and simpler
correctness proofs. Recall, the specific construction schema for the predecessors is

pred :
.= λn.n supp p0 (A5)

where supp and p0 are chosen so that the following holds

supp p0
.= c0 supp cn

.= succ cn ∀n ≥ 0 (A6)

These conditions indeed guarantee the correctness:

pred cn+1
.= cn+1 supp p0

.= cn supp (supp p0)
.= cn supp c0

.= cn succ c0
.= cn

using Equation (1) and (*). That these conditions hold for Equation (14) is shown in
Section 6; for the others in that Section, the checks are just as straightforward.

The correctness of Equation (23) depends, foremost, on the correctness of reflec-
tion/reification:

λfx.reflf (reifx cn)
.= cn ∀n ≥ 0 (A7)

It is easy to check by calculation that reflf ◦ Somex
.= f ◦ reflf . Then Equation (A7) imme-

diately follows from Equation (A2). Furthermore, the reduction of reflf (Some(n)
x Nonex)

to f (n)x requires performing of no more than n + 1 reductions of the sort fix e to e(fix e)
(“unrolling of the fixpoint”). This justifies the replacement of reflf with refl′

f cn+1 in the
above reflf reduction.

B Appendix

Predecessors on trees

The general approaches for constructing a predecessor of Church numerals in Sections 5
and 7 are general indeed and apply to the Church encoding of any algebraic data type
(initial F-algebra). As an illustration, this section uses them to build an extractor of a
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branch from a binary tree. The accompanying code contains the complete development,
closely following the explanations in the paper; the following describes its salient points.

Binary trees with leaves containing data from some set A are described by the functor
FA(X ) := A + X × X , or, in a programming language notation

type (’a,’x) tree = Leaf of ’a | Node of ’x * ’x

The corresponding Church initial algebra has operations leaf of arity 0 (but with the
parameter A) and node of arity 2, defined as follows:

leaf := λa.λfg.f a node := λt1t2.λfg.g(t1fg) (t2fg)

We use t as a metavariable for a Church-encoded tree. Any such tree is constructable using
the operations of the algebra: t

.= t leaf node, which is the analogue of (*). The goal is to
find branch extractors terms left and right with the following property:

left (node t1 t2)
.= t1 right (node t1 t2)

.= t2 for any trees t1, t2

Given any other tree algebra (whose operations we will be calling pleaf and
pnode), the (unique) homomorphism from the Church initial algebra is computed by
t 
→ t pleaf pnode. This is the analogue of (**).

The reflection-reification approach of Section 7 relies on the (optimized) Scott–
Mogensen encoding of the algebraic data type that is a carrier of the initial FA-algebra:

Leaff := λa.λg.f a Nodef := λt1t2.λg.g t1 t2

The reification and reflection perform conversions:

reiff :
.= λt.t Leaff Nodef reflg :

.= fix λs.λt.t(λt1t2.g(st1)(st2))

Extracting the left and the right branch from Nodef p1 p2 cannot be simpler: pleft :=
λp.p true and similarly for pright. Thus, the left and right extractors for Church-encoded
trees are obtained by converting a tree to the Scott–Mogensen encoding, extracting the
branch there, and reflecting it back to the Church encoding:

left :
.= λt.λfg.reflg (pleft (reiff t))

As in Section 7, fix can be avoided, by letting the tree drive its own reflection. Obtaining
left and right that have a normal form is left as an exercise (the accompanying code
shows the answer).

Section 5, in contrast, relies on the Böhm–Berarducci encoding of tree; here it is, in
the optimized form as explained in the second half of Section 5:

pleaff := λa.λk.f a pnodeg := λt1t2.λk.k (t1g) (t2g)

Then the left extractor is obtained as λt.λfg.t pleaff pnodeg true—or, in the normal
form:

λt.λfg.t (λa.λk.fa) (λt1t2.λk.k (t1g) (t2g)) (λxy.x)
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