
Even Better Stream Fusion

Oleg Kiselyov

Tohoku University, Japan

Tensor seminar, 18 February 2022

2

Outline

I Introduction: What is Stream Processing

Stream Fusion

Strymonas

Case Study: FM Radio

3

Tabulating Machine

(Wikipedia Commons)

4

Punchcard

5

Tabulating Machine

6

Stream Processing

I Sequential

I Incremental

I Unbounded amount of data

I Limited memory

7

The Michael Jackson Design Technique
The Michael Jackson Design Technique: A study of the theory
with applications. C.A.R.Hoare, 1977

8

Origins of streams in CS

Melvin E. Conway: Design of a Separable Transition-diagram
Compiler. Commun. ACM, July 1963, 396–408

A COBOL compiler design is presented which is com-
pact enough to permit rapid, one-pass compilation of a
large sub- set of COBOL on a moderately large computer
[10,000-16,000 words]. Versions of the same compiler
for smaller machines require only two working tapes plus
a compiler tape. The methods given are largely applica-
ble to the construction of ALGOL compilers.

The compiler is written in Assembly by two people in less than
a year

9

Origins of streams in CS

Coroutines and Separable Programs

That property of the design which makes it amenable to many
segment configurations is its separability. A program organization is
separable if it is broken up into processing modules which
communicate with each other according to the following restrictions:
(1) the only communication between modules is in the form of
discrete items of information; (2) the flow of each of these items is
along fixed, one-way paths; (3) the entire program can be laid out so
that the input is at the left extreme, the output is at the right
extreme, and everywhere in between all information items flowing
between modules have a component of motion to the right.

9

Origins of streams in CS

9

Origins of streams in CS

Can you tell that Jackson wasn’t an EE but Conway was?

10

Stream Processing

Box, with one input and one output

I Sequential

I Incremental

I Unbounded amount of data

I Limited memory

Diagrams

I Connecting the above boxes

I Finite buffering

11

Sample Diagram

SAO (Spécification Assistée par Ordinateur) — Airbus 80’s

12

Event processing

NEXMark benchmark query 7

Query 7 monitors the highest price items currently on auction.
Every ten minutes, this query returns the highest bid (and
associated itemid) in the most recent ten minutes.

SELECT Rstream(B.price , B.itemid)

FROM

Bid [RANGE 10 MINUTE SLIDE 10 MINUTE] B

WHERE

B.price = (SELECT MAX(B1.price)

FROM BID [RANGE 10 MINUTE SLIDE 10 MINUTE] B1)

LIMIT 1;

Window processing

13

What is Stream Processing

I Record (punchcard) In/Record Out processing
COBOL-like processing

I Co-routines

I Digital signal processing

I Event processing/correlation
window processing

Can be represented as a diagram of connected boxes with
dataflow left-to-right

13

What is Stream Processing

I Record (punchcard) In/Record Out processing
COBOL-like processing

I Co-routines

I Digital signal processing

I Event processing/correlation
window processing

Can be represented as a diagram of connected boxes with
dataflow left-to-right

Intuitive design v. performance

14

Outline

Introduction: What is Stream Processing

I Stream Fusion

Strymonas

Case Study: FM Radio

15

Fusion

A Catalog of Stream Processing Optimizations 46:11

as operator reordering, are often done dynamically, as discussed in the corresponding
sections.

5. FUSION (A.K.A. SUPERBOX SCHEDULING)

Avoid the overhead of data serialization and transport.

5.1. Example

Consider a security application that continuously scrutinizes system logs to detect
security breaches. The application contains an operator A that parses the log messages,
followed by a selection operator B that uses a simple heuristic to filter out log messages
that are irrelevant for the security breach detection. Assume that the two operators
run on separate cores, and that the selection operator B is lightweight compared to
the cost of transferring a data item from A to B and firing B. Fusing A and B prevents
the unnecessary data transfer and operator firing. The fusion removes the pipeline
parallelism between A and B, but since B is lightweight, the savings outweigh the lost
benefits from pipeline parallelism.

5.2. Profitability

Fusion trades communication cost against pipeline parallelism. When two operators
are fused, the communication between them is cheaper. But without fusion, in a mul-
tithreaded system, they can have pipeline parallelism: the upstream operator already
works on the next data item while, simultaneously, the downstream operator is still
working on the previous data item. The chart shows throughput given two operators
of equal cost. The cost of the operators is normalized to a communication cost of 1 for
sending a data item between nonfused operators. When the operators are not fused,
there are two cases: if operator cost is lower than communication cost, throughput is
bounded by communication cost; otherwise, it is determined by operator cost. When the
operators are fused, performance is determined by operator cost alone. The break-even
point is when the cost per operator equals the communication cost, because the fused
operator is 2× as expensive as each individual operator.

5.3. Safety

Fusion is safe if the following conditions hold:

—Ensure resource kinds. The fused operators must only rely on resources, including
logical resources such as local files and physical resources such as GPUs, that are all
available on a single host.

ACM Computing Surveys, Vol. 46, No. 4, Article 46, Publication date: March 2014.

16

Fusion in 1963

Melvin E. Conway: Design of a Separable Transition-diagram

Compiler. Commun. ACM, July 1963, 396–408

17

Pipes

cat simple.ml | tr -d " " | tr "[A-Z]" "[a-z]" |

grep flatmap | wc -l

17

Pipes

cat simple.ml | tr -d " " | tr "[A-Z]" "[a-z]" |

grep flatmap | wc -l

cat simple.ml |

awk ’/[Ff] *[Ll] *[Aa] *[Tt] *[Mm] *[Aa] *[Pp]/ {c++}
END {print c}’

17

Pipes

cat simple.ml | tr -d " " | tr "[A-Z]" "[a-z]" |

grep flatmap | wc -l

cat simple.ml |

awk ’/[Ff] *[Ll] *[Aa] *[Tt] *[Mm] *[Aa] *[Pp]/ {c++}
END {print c}’

Perl

18

Array Programming

n−1∑
i=0

a2i

18

Array Programming

n−1∑
i=0

a2i

let a = . . .
let a2 = map sqr a
sum a2

where
let sqr : float → float = fun x → x *. x
let map : (α→ β) → α array → β array = Array.map
let sum : float array → float = Array.fold left (+.) 0.

18

Array Programming

n−1∑
i=0

a2i

let a = . . .
sum (map sqr a)

where
let sqr : float → float = fun x → x *. x
let map : (α→ β) → α array → β array = Array.map
let sum : float array → float = Array.fold left (+.) 0.

18

Array Programming

n−1∑
i=0

a2i

let a = . . .
a B map sqr B sum

where
let sqr : float → float = fun x → x *. x
let map : (α→ β) → α array → β array = Array.map
let sum : float array → float = Array.fold left (+.) 0.
let (B) x f = f x

18

Array Programming

n−1∑
i=0

a2i

let a = . . .
a B filter Float.is finite B map sqr B sum

where
let sqr : float → float = fun x → x *. x
let map : (α→ β) → α array → β array = Array.map
let sum : float array → float = Array.fold left (+.) 0.
let (B) x f = f x
let filter : (α→bool) → α array → α array =
fun f x → x B Array.to list B List.filter f B Array.of list

19

Array Programming with Fusion

type α arr = A of int * (int→ α)
let to arr : α array → α arr = fun a →

A (Array.length a, Array.get a)

I map is constant time and space

I No longer any intermediary arrays created

19

Array Programming with Fusion

type α arr = A of int * (int→ α)
let to arr : α array → α arr = fun a →

A (Array.length a, Array.get a)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, ix . f)

let (.) f g = fun x → f x B g

I map is constant time and space

I No longer any intermediary arrays created

19

Array Programming with Fusion

type α arr = A of int * (int→ α)
let to arr : α array → α arr = fun a →

A (Array.length a, Array.get a)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, ix . f)

let sum : float arr → float = fun (A (n,ix)) →
let rec loop acc i = if i ≥ n then acc else loop (acc +. ix i) (i+1)
in loop 0. 0

I map is constant time and space

I No longer any intermediary arrays created

19

Array Programming with Fusion

to arr a B map sqr B sum

type α arr = A of int * (int→ α)
let to arr : α array → α arr = fun a →

A (Array.length a, Array.get a)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, ix . f)

let sum : float arr → float = fun (A (n,ix)) →
let rec loop acc i = if i ≥ n then acc else loop (acc +. ix i) (i+1)
in loop 0. 0

I map is constant time and space

I No longer any intermediary arrays created

19

Array Programming with Fusion

to arr a B map sqr B sum
??? to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int→ α)
let to arr : α array → α arr = fun a →

A (Array.length a, Array.get a)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, ix . f)

let sum : float arr → float = fun (A (n,ix)) →
let rec loop acc i = if i ≥ n then acc else loop (acc +. ix i) (i+1)
in loop 0. 0

I map is constant time and space

I No longer any intermediary arrays created

20

Array Programming with Filtering and Fusion

to arr a B filter Float.is finite B map sqr B sum

Arrays with missing elements
type α option = None | Some of α
type α arr = A of int * (int→ α option)

let to arr : α array → α arr = . . .

20

Array Programming with Filtering and Fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int→ α option)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i → match ix i with Some y → Some (f y) | → None)

20

Array Programming with Filtering and Fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int→ α option)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i → match ix i with Some y → Some (f y) | → None)

let sum : float arr → float = . . .

20

Array Programming with Filtering and Fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int→ α option)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i → match ix i with Some y → Some (f y) | → None)

let filter : (α→bool) → α arr → α arr = fun f (A (n,ix)) →
A(n,fun i →

match ix i with Some y when f y → Some y | → None)

20

Array Programming with Filtering and Fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int→ α option)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i → match ix i with Some y → Some (f y) | → None)

let filter : (α→bool) → α arr → α arr = fun f (A (n,ix)) →
A(n,fun i →

match ix i with Some y when f y → Some y | → None)

The fusion: no unbounded intermediate data structures

20

Array Programming with Filtering and Fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int→ α option)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i → match ix i with Some y → Some (f y) | → None)

let filter : (α→bool) → α arr → α arr = fun f (A (n,ix)) →
A(n,fun i →

match ix i with Some y when f y → Some y | → None)

The fusion is incomplete

I constant (de)construction of α option (per element)

I overhead of many function calls (per operator)

I higher-order: how to do it in first-order language

21

Towards complete fusion

to arr a B filter Float.is finite B map sqr B sum

Arrays with missing elements, in CPS
type α arr = A of int * (int → (α→unit) → unit)

21

Towards complete fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int → (α→unit) → unit)

let to arr : α array → α arr = fun a →
A (Array.length a, fun i k → Array.get a i B k)

21

Towards complete fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int → (α→unit) → unit)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i k → ix i (f . k))

21

Towards complete fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int → (α→unit) → unit)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i k → ix i (f . k))

let sum : float arr → float = fun (A (n,ix)) →
let sum = ref 0. in
for i = 0 to n-1 do

ix i (fun y → sum := !sum +. y)
done; !sum

21

Towards complete fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int → (α→unit) → unit)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i k → ix i (f . k))

let filter : (α→bool) → α arr → α arr = fun f (A (n,ix)) →
A(n,fun i k → ix i (fun y → if f y then k y))

21

Towards complete fusion

to arr a B filter Float.is finite B map sqr B sum

type α arr = A of int * (int → (α→unit) → unit)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i k → ix i (f . k))

let filter : (α→bool) → α arr → α arr = fun f (A (n,ix)) →
A(n,fun i k → ix i (fun y → if f y then k y))

The fusion is still incomplete, even got worse

22

Array Programming with Complete Fusion

Staged Arrays with missing elements
type α cde = string
type α arr =

A of int cde * (int cde → (α cde → unit cde) → unit cde)

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array → α arr = fun a →
A (Array.length a, fun i k → Array.get a i B k)

Before (unstaged)

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

Generate the code to evaluate Array.length and Array.get later

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let map : (α→ β) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i k → ix i (f . k))

Before (unstaged)

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let map : (α cde → β cde) → α arr → β arr = fun f (A (n,ix)) →
A(n, fun i k → ix i (f . k))

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let sum : float arr → float = fun (A (n,ix)) →
let sum = ref 0. in
for i = 0 to n-1 do

ix i (fun y → sum := !sum +. y)
done; !sum

Before (unstaged)

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let sum : float arr → float cde = fun (A (n,ix)) →
sprintf
”let sum = ref 0. in
for i = 0 to %s-1 do

%s done; !sum” n
(ix ”i” (fun y → sprintf ”sum := !sum +. %s” y))

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let filter : (α→bool) → α arr → α arr = fun f (A (n,ix)) →
A(n,fun i k → ix i (fun y → if f y then k y))

Before (unstaged)

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let filter : (α cde → bool cde) → α arr → α arr = fun f (A (n,ix))
→

A(n,fun i k → ix i (fun y → sprintf ”if %s then %s” (f y) (k y)))

22

Array Programming with Complete Fusion

type α arr =
A of int cde * (int cde → (α cde → unit cde) → unit cde)

let to arr : α array cde → α arr = fun a →
A (sprintf ”Array.length %s” a,

fun i k → sprintf ”(Array.get %s %s)” a i B k)

let filter : (α cde → bool cde) → α arr → α arr = fun f (A (n,ix))
→

A(n,fun i k → ix i (fun y → sprintf ”if %s then %s” (f y) (k y)))

let app : (α→ β) cde → α cde → β cde = fun f x →
sprintf ”(%s %s)” f x

23

Array Programming with Complete Fusion

to arr a B filter Float.is finite B map sqr B sum

Before (unstaged)

23

Array Programming with Complete Fusion

let is finite = app ”Float.is finite”
let sqr = app ”sqr”

let v2 = to arr ”a” B filter is finite B map sqr B sum

23

Array Programming with Complete Fusion

let is finite = app ”Float.is finite”
let sqr = app ”sqr”

let v2 = to arr ”a” B filter is finite B map sqr B sum

let sum = ref 0. in
for i = 0 to Array.length a-1 do

if (Float.is finite (Array.get a i)) then
sum := !sum +. (sqr (Array.get a i))

done; !sum

24

Outline

Introduction: What is Stream Processing

Stream Fusion

I Strymonas

Case Study: FM Radio

25

Examples of Strymonas
Sum of even squares: sum of squares with filtering
Strymonas

C.one arg fun @@ fun arr →
of arr arr
B filter C.(fun x → x mod (int 2) = int 0)
B map C.(fun x → x ∗ x)
B sum int

generated code

fun arg1 49 →
let t 50 = (Stdlib.Array.length arg1 49) − 1 in
let v 51 = Stdlib.ref 0 in
for i 52 = 0 to t 50 do

(let el 53 = Stdlib.Array.get arg1 49 i 52 in
if (el 53 mod 2) = 0
then let t 54 = el 53 ∗ el 53 in v 51 := ((! v 51) + t 54))

done;
! v 51

Combinators in two different namespaces

26

Another simple example

let ex1 = iota C.(int 1) B map C.(fun e → e ∗ e)
(∗ val ex1 : int cstream = <abstr> ∗)

let sum int = fold C.(+) C.(int 0)
(∗ val sum int : int cstream → int cde = <fun> ∗)

let ex2 = ex1 B filter C.(fun e → e mod (int 17) > int 7)
B take C.(int 10) B sum int

generates

26

Another simple example

let ex1 = iota C.(int 1) B map C.(fun e → e ∗ e)
(∗ val ex1 : int cstream = <abstr> ∗)

let sum int = fold C.(+) C.(int 0)
(∗ val sum int : int cstream → int cde = <fun> ∗)

let ex2 = ex1 B filter C.(fun e → e mod (int 17) > int 7)
B take C.(int 10) B sum int

generates

let v 1 = Stdlib.ref 0 in
(let v 2 = Stdlib.ref 10 in
let v 3 = Stdlib.ref 1 in
while (! v 2) > 0 do
let t 4 = ! v 3 in
Stdlib.incr v 3;
(let t 5 = t 4 ∗ t 4 in
if (t 5 mod 17) > 7 then (Stdlib.decr v 2; v 1 := ((! v 1) + t 5)))
done);

! v 1

26

Another simple example
let ex1 = iota C.(int 1) B map C.(fun e → e ∗ e)
(∗ val ex1 : int cstream = <abstr> ∗)

let sum int = fold C.(+) C.(int 0)
(∗ val sum int : int cstream → int cde = <fun> ∗)

let ex2 = ex1 B filter C.(fun e → e mod (int 17) > int 7)
B take C.(int 10) B sum int

generates

int cfun()
{ int v 1 = 0; int v 2 = 10; int v 3 = 1;

while (v 2 > 0)
{ int t 4; int t 5;

t 4 = v 3;
v 3++;
t 5 = t 4 ∗ t 4;
if ((t 5 % 17) > 7)
{ v 2−−; v 1 = v 1 + t 5; }

}
return v 1;}

27

Database join

T1: string * int table, T2: int * float table
select T1.1, 2*T2.2 from T1, T2 where T1.2=T2.1 and T2.2 > 5.0

let cart (s1,s2) =
s1 B flat map (fun e1 → s2 B Raw.map raw’ (fun e2 → (e1,e2))) in

let join (t1,t2) =
cart (of arr t1, of arr t2) B

(∗ WHERE clauses ∗)
Raw.filter raw C.(fun (e1,e2) → snd e1 = fst e2) B
Raw.filter raw C.(fun (e1,e2) → truncate (snd e2) > int 5) B

(∗ SELECTion ∗)
Raw.map raw’ C.(fun (e1,e2) → pair (fst e1) (snd e2 ∗. float 2.)) B

(∗ Output ∗)
iter (fun (e1,e2) → seq (print e1) (print float e2))

28

A weird test

let square x = C.(x ∗ x) and
even x = C.(x mod (int 2) = int 0) in

Raw.zip raw
(∗ First stream to zip ∗)
([| 0;1;2;3|] B of int array
B map square
B take (C.int 12)
B filter even
B map square)

(∗ Second stream to zip ∗)
(iota (C.int 1)
B flat map (fun x →

iota C.(x+int 1) B take (C.int 3))
B filter even)

B iter C.(fun (x,y) → seq (print int x) (print int y))

29

A weird test: result

let t 71 = [| 0;1;2;3|] in
let v 70 = ref 12 in
let v 72 = ref 0 in
let v 73 = ref 1 in
while ((! v 70) > 0) && ((! v 72) ≤ 3) do
let t 77 = ! v 73 in
incr v 73;
(let v 78 = ref 3 in
let v 79 = ref (t 77 + 1) in
while ((! v 78) > 0) && (((! v 70) > 0) && ((! v 72) ≤ 3)) do
decr v 78;
(let t 80 = ! v 79 in
incr v 79;
if (t 80 mod 2) = 0
then
(let v 81 = ref true in
while ! v 81 do
(decr v 70;
(let el 82 = Array.get t 71 (! v 72) in
let t 83 = el 82 ∗ el 82 in
if (t 83 mod 2) = 0
then
let t 84 = t 83 ∗ t 83 in
(v 81 := false;
(Format.print int t 84;
Format.force newline ());
Format.print int t 80;
Format.force newline ()));

incr v 72);
v 81 := ((! v 81) && (((! v 70) > 0) && ((! v 72) ≤ 3))) done))

done)
done

30

Stateful Streams

Difference encoder

let diff : int cstream → int cstream = fun st →
initializing ref C.(int 0) @@ fun z →
map C.(fun e → letl (e − dref z) @@ fun v → seq (z := e) v) st

take while

let take while : (α cde → bool cde) → α cstream → α cstream = fun f st →
initializing ref C.(bool true) @@ fun zr →
st B map raw C.(fun e k → if (f e) (k e) (zr := bool false)) B guard C.(dref zr)

31

Results: JVM

32

Results: C

cart
dotProd

uct

filtersM
egamo

rphic
flatMap

AfterZi
p

flatMap
Take

mapsM
egamo

rphic sum
sumOfS

quares

sumOfS
quares

Even
zipAfte

rFlatMa
p

zipFilte
rFilter

zipFlat
MapFla

tMap

Benchmarks about generated C

0

100

200

300

400

500

m
s/
op
 (t
ru
nc
at
ed
)

AnonymizedCO0
AnonymizedCO3

BaselineCO0 BaselineCO3

33

Outline

Introduction: What is Stream Processing

Stream Fusion

Strymonas

I Case Study: FM Radio

34

Software FM Radio

William Thies. PhD Thesis, MIT, 2009

35

Software FM Radio in Strymonas

let samplingRate = 250 000 000.
let cutoffFrequency = 108 000 000.
let numberOfTaps = 64
let maxAmplitude = 27 000.
let bandwidth = 10 000.

let numIters = C.int 1 000 000

let () =
C.newref C.(float 0.) (fun out →

get floats
B lowPassFilter samplingRate cutoffFrequency numberOfTaps 4
B fmDemodulator samplingRate maxAmplitude bandwidth
B equalizer samplingRate bands eqCutoff eqGain numberOfTaps
B take numIters
B iter C.(fun e → out:=e)

)
B C.print ∼name:”fmradio”

36

Basic idea: filtering

let lowPassFilter : float → float → int → int → float cstream → float cstream =
fun rate cutoff taps decimation st →
let mk coeff arr cutoff = . . .
in
let (module Win) = Window1.make window taps decimation in
st
B Win.make stream C.tfloat
B map raw (fun win →

C.letl (Win.dot C.tfloat (mk coeff arr cutoff) C.(+.) C.(∗.) win))

37

Conclusions

I Stream processing is varied: EE, CS, MBA,. . .

I Stream fusion is important and nontrivial
especially complete stream fusion

I Strymonas can do it

38

Team

Joint work with
Aggelos Biboudis, Tomoaki Kobayashi, Nick Palladinos, and
Yannis Smaragdakis

	Introduction: What is Stream Processing
	Stream Fusion
	Strymonas
	Case Study: FM Radio

