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The Central Problem

Stable Denotations
Unstable denotations doomed the denotational semantics

or,

Extensible Interpreters



Extensible Interpreters

type exp = Int of int | Inc of exp

let rec eval : exp — int
= function

| Intn —n

| Ince —evale+ 1

denotational semantics (eval as the semantic function)
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Non-Extensible Interpreters

type exp = Int of int | Inc of exp
| Equal of exp * exp | If of exp x exp * exp
| Exc of string
| Get | Put of exp

let rec eval : exp — (state — (int + bool + exc, state))
= function
| Int n — fun's — (Left?? n,s)



Non-Extensible Interpreters

type exp = Int of int | Inc of exp
| Equal of exp * exp | If of exp x exp * exp
| Exc of string
| Get | Put of exp
| Var of vname | Lam of vname x exp | App of exp * exp

type env = vname — v?7

let rec eval : exp — (env — state — (v + exc, state))
= function

| Int n — fun env — fun s — (Left (Left n),s)

A knotty problem



Towards Extensible Interpreters

type exp = Int of int | Inc of exp

let rec eval : {int — int} — exp — int
= fun {inj} — function
| Int n — inj n



Towards Extensible Interpreters

type exp = Int of int | Inc of exp
| Equal of exp * exp | If of exp x exp * exp
| Exc of string
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Towards Extensible Interpreters

type exp = Int of int | Inc of exp
| Equal of exp * exp | If of exp x exp * exp
| Exc of string
| Get | Put of exp

let rec eval : (int — w) — exp —

((state — (v + exc, state)) as w)
= fun inj — function
| Int n — inj n



Further Towards Extensible Interpreters

type exp = Int of int | Inc of exp

let rec eval : {...} — exp — int

= fun {inj,prj} — function

| Intn — injn

| Inc e — match prj (eval e) with
| Left n — inj (n+1)
| Right e — 777

10



Further Towards Extensible Interpreters

type exp = Int of int | Inc of exp
| Equal of exp * exp | If of exp * exp * exp
| Exc of string
| Get | Put of exp

let rec eval : (int — w) = exp —
((state — (v + exc, state)) as w)
= fun {inj,prj} — function
| Int n — inj n
| Inc e — match prj (eval e) with
| Left n — inj (n+1)
| Right e — 777
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Extensible Interpreters

typev = ..
type v + = Vint of int

typee = ..
type e + = Error of string

typec = Vofv|FXofex (v—c)

let rec eval : exp — ¢
= function
| Int n — V (VInt n)
| Ince —
let rec inc = function
| V (Vint n) — V (VInt (n+1))
| FX (e,k) — FX (e,fun x — k (inc x))
in inc (eval e)
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Extensible Interpreters

typec = Vofv|FXofex (v—c)

let rec lift: ¢ —» (v — ¢) — ¢ = fun c k — match c with
| V x — k x
| FX (e,kl) — FX (e, fun x — lift (k1 x) k)

let rec eval : exp — ¢

= function

| Int n — V (VInt n)

| Inc e — lift (eval c) @@ function
| V (VInt n) — V (Vint (n+ 1))
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State

let send: e - ¢ = fun e — FX(e,(fun x — V x))

type e += EGet | EPut of v

let rec eval : exp — ¢

= function

| Get — send EGet

| Pute — lift (eval e) @@ fun v — send (EPut v)

14



State

let rec eval : exp — ¢

= function

| Get — send EGet

| Pute — lift (eval e) @@ fun v — send (EPut v)

let rec observe: v — ¢ — ¢ = fun state — function
| Vx—Vx
| FX (EGet,k) — observe state (k state)
| FX (EPut state,k) — observe state (k state)
| F

X (e,k) — FX (e, fun x — observe state (k x))
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Lambda as State?

type exp = Int of int | Inc of exp
| Equal of exp * exp | If of exp x exp * exp
| Exc of string
| Get | Put of exp
| Var of vname | Lam of vname * exp | App of exp * exp

type env = vname — v?77?
let rec eval : exp — (env — state — (v + exc, state))
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Lambda

type v += VFun of (v — ¢)
type e + = EVar of vname | EClosure of vname * d

let rec eval : exp — ¢
= function
| Varv — send (EVar v)
| Lam (v,body) — send (EClosure (v, eval body))
| App (el,e2) — lift2 (eval el) (eval e2) @@ function
(VFun fx) — f x

17



Lambda

let rec observe : env — ¢ — ¢ = fun env — function
| Vx — V x
| FX (EVar var,k) — lookup var env Q@
fun v — observe env (k v)
| FX (EClosure (var,body), k) —
let v = VFun (fun x — observe ((var,x):: env) body) in
observe env (k v)
| FX (e k) — FX (e, fun x — observe env (k x))
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Details

Extending interpreters, mix-and-match features in any
combination

http://okmij.org/ftp/Computation/having-effect.html
using Haskell

Detailed (1h38m) talk
YouTube; using Haskell

This workshop’s page

OCaml code with many comments
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Conventional Computational Model no longer suffices

“Here’s the issue. It looks as though the future of scaling is lots
of processors, running slower than typical desktops, with things
turned down or off as much as possible, so you won’t be able to
pull the Parallela/Epiphany trick of always being able to access
another chip’s local memory. Any programming model that
relies on large flat shared address spaces is out; message passing
that copies stuff is going to be much easier to manage than
passing a pointer to memory that might be powered off when
you need it; anything that creates tight coupling between the
execution orders of separate processors is going to be a
nightmare.”

Richard A. O’Keefe. Haskell-Cafe, October 28, 2016
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Conventional Computational Model no longer sufficed

“In sequential computing, the value of a variable at a given
time point is a well-defined notion. On the other hand, I had
thought in studying the properties of Guarded Horn Clauses
(GHC) that the value of a variable observed at some time point
and place would not necessarily be a well-defined notion. I
thought that the model (or more specifically, the memory
model) of concurrency we wanted to establish should allow the
observation of the value of a variable to take time and the value
of a variable to be transmitted asynchronously to each
occurrence of the variable.”

Kazunori Ueda: The Hard-Won Lessons of the Fifth Generation
Computer Project, 2017
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Conventional Computational Model no longer sufficed

At the workshop on Functional and Logic Programming held in
Trento, Italy in December 1986, I asked if there was a theory
that made clear distinction between variables and occurrences
of variables. Per Martin-Loef responded that Jean-Yves Girard
of the University of Paris 7 was considering Linear Logic.
Linear Logic, published immediately after that, had no direct
connection to asynchrony I was thinking about...”

Kazunori Ueda: The Hard-Won Lessons of the Fifth Generation
Computer Project, 2017
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