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Abstract
Quasi-quotation (or, code templates) has long been used as a con-
venient tool for code generation, commonly implemented as a
pre-processing/translation into code-generation combinators. The
original MetaOCaml was also based on such translation, done post
type checking. BER MetaOCaml employs a significantly different,
efficient (especially in version N114) translation integrated with
type-checking, in the least intrusive way. This paper presents the
integrated efficient translation for the first time.

1 Introduction
(BER) MetaOCaml [4, 5] is a superset of OCaml to generate as-
suredly well-formed, well-scoped and well-typed code using code
templates, also known as brackets and escapes. For example:

let eta = fun f→ .<fun x → .~(f .<x>.)>.
(∗ val eta : (𝛼 code→ 𝛽 code)→ (𝛼 → 𝛽) code = <fun> ∗)

Although the function looks banal, it has a long history and special
significance in partial evaluation, where it is called ‘the trick’ [3].
Brackets .<. . .>. enclose code to generate: in our case, the code of
a function. An escape .~ marks a hole in the template; the escaped
expression is to generate the code to plug into the hole. Brackets are
akin to string quotation marks ‘"’: indeed, a template without holes
can be converted to a string and written into a file. Unlike strings,
however, code templates have structure: the code within a template
has to be well-formed – moreover, well-typed OCaml code. If that
code has type 𝛼 , the whole template has the type 𝛼 code. Code
templates without holes are values and can be passed as arguments
(as seen in f .<x>.) and returned as function results. Templates may
contain open code, such as .<x>., which is literally the code of a
free variable. Here is an example of using eta, with the detailed
reduction sequence:

eta (fun z → .<4 ∗ 5 ∗ .~z>.)
{𝛽𝑣 .<fun x→ .~((fun z→ .<4 ∗ 5 ∗ .~z>.) .<x>.)>.
{𝛽𝑣 .<fun x→ .~(.<4 ∗ 5 ∗ .~(.<x>.)>.)>.
{𝑠𝑝𝑙𝑖𝑐𝑒 .<fun x→ .~(.<4 ∗ 5 ∗ x>.)>.
{𝑠𝑝𝑙𝑖𝑐𝑒 .<fun x→ 4 ∗ 5 ∗ x>.

The ‘quoted’ (i.e., templated) code remains as is: for example, 4 ∗ 5
is not reduced. The evaluation – substitution of values for bound
variables{𝛽𝑣 and filling-in a hole in the template with the brack-
eted value {𝑠𝑝𝑙𝑖𝑐𝑒 – occurs either outside of brackets or within
escapes. If we enter eta (fun z → .<4 ∗ 5 ∗ .~z>.) at the MetaOCaml
top-level, we indeed see

− : (int → int) code = .<fun x_1→ 4 ∗ 5 ∗ x_1>.

The bound variables get automatically renamed: looking a bit ahead,
choosing fresh variable names is the responsibility of the mkl code
combinator, Fig. 3.

A template without holes and free variables such as above (so-
called close code value) is the generated code: it can be written

into a file and compiled, and even linked back into the generated
program and invoked there. The function Runcode.run provided
by MetaOCaml does the compilation-linking steps:

let g = Runcode.run .<fun x_1 → 4 ∗ 5 ∗ x_1>.;;
(∗ val g : int→ int = <fun> ∗)
g 3;;
(∗ − : int = 60 ∗)

Thus the product 4 ∗ 5 is computed only when the generated code
is compiled and then executed – at a later, future stage, so to speak.

(Onemay get an inkling why eta is called ‘the trick’.) MetaOCaml
is hence a multi-staged language.

This paper presents the theory of BER MetaOCaml implementa-
tion. It uses the standard in theoretical CS mathematical notation
and looks theoretical. The notation, however, is the pseudo-code
of the actual implementation. The paper is written to prototype in
the mathematical notation the new efficient translation, §3.1, and
clarify its subtle points. It is incorporated into the recently released
(May 2023) version N114 of BER MetaOCaml. The characteristic
and surprising feature of the translation is using what feels like
only two stages to support multiple.

The author could not believe that this is correct, and hence
this paper was written to convince him. The implementation in
BER MetaOCaml N114 was then done by literally transcribing the
pseudo-code of Fig. 4 into OCaml. It worked the first time, passing
all tests in the extensive MetaOCaml testing suite.

2 Type-checking staged programs

Variables 𝑓 , 𝑥,𝑦, 𝑧

Types 𝑡 ::= int | 𝑡 → 𝑡

Integer constants 𝑖 ::= 0, 1, . . .
Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝑒 𝑒 | 𝜆𝑥 . 𝑒
Environment Γ ::= · | Γ, 𝑥 :𝑡

Figure 1. Base calculus: simply-typed lambda calculus with integers

We start with the base calculus: it is the utterly standard simply
typed lambda calculus with integers, shown merely for the sake
of notation, particularly the notation of the typing judgment: Γ ⊢
𝑒 ⇒ 𝑒 : 𝑡 . The notation makes it explicit that type checking is
type reconstruction: converting an ‘untyped’ expression 𝑒 to the
type-annotated form 𝑒 : 𝑡 – or, in terms of the OCaml type checker,
converting from Parsetree to Typedtree. §3.1 shows a non-trivial
use of this notation.

Γ ⊢ 𝑖 ⇒ 𝑖 : int
𝑥 : 𝑡 ∈ Γ

Γ ⊢ 𝑥 ⇒ 𝑥 : 𝑡

Γ ⊢ 𝑒 ⇒ 𝑒 : 𝑡 ′ → 𝑡 Γ ⊢ 𝑒′ ⇒ 𝑒′ : 𝑡 ′

Γ ⊢ 𝑒 𝑒′ ⇒ (𝑒 : (𝑡 ′ → 𝑡) 𝑒′ : 𝑡 ′) : 𝑡

Γ, 𝑥 : 𝑡 ′ ⊢ 𝑒 ⇒ 𝑒 : 𝑡

Γ ⊢ 𝜆𝑥. 𝑒 ⇒ (𝜆𝑥 : 𝑡 ′ . 𝑒 : 𝑡) : (𝑡 ′ → 𝑡)
1
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We assume that the initial environment Γ𝑖 to type check the
whole program contains the bindings of standard library functions
such as succ, addition, etc. In the rule for abstraction, one may
wonder where does the type 𝑡 ′ come from. For the purpose of the
present paper, one may consider it a ‘guess’. After all, our subject
is not type inference, but staging – to which we now turn.

Figure 2 presents the staged calculus: the Base calculus extended
with bracket <𝑒> and escape ~𝑒 expression forms and code types
<𝑡>.

Variables 𝑓 , 𝑥,𝑦, 𝑧

Types 𝑡 ::= int | 𝑡 → 𝑡 | <𝑡>
Integer constants 𝑖 ::= 0, 1, . . .
Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝑒 𝑒 | 𝜆𝑥. 𝑒 | <𝑒> | ~𝑒
Stage 𝑛,𝑚 ≥ 0
Environment Γ ::= · | Γ, 𝑥𝑛 : 𝑡

Figure 2. Staged calculus

The calculus is actually multi-staged: brackets may nest arbi-
trarily, e.g., <<1>>. The level of nesting is called stage. The present
stage, stage 0, is outside of any brackets. An expression at stage
1 or higher is called future-stage. As should be clear from the eta
example in §1, the evaluation only happens at the present stage.
The typing judgment Γ ⊢𝑛 𝑒 ⇒ 𝑒 : 𝑡 is now annotated with stage
𝑛 ≥ 0. All variable bindings in Γ are also annotated with their stage:
𝑥𝑛 : 𝑡 .

The rules for integer constants and application remain the same,
modulo replacing ⊢ with ⊢𝑛 : in general, most typing rules are un-
affected by (or, are invariant of) staging. This is a good news for
implementation: adding staging to an extant language does not
affect the type checker to large extent. Here are the changed and
new rules:

𝑥𝑚 : 𝑡 ∈ Γ
𝑚 ≤ 𝑛

Γ ⊢𝑛 𝑥 ⇒ 𝑥𝑚 : 𝑡

Γ, 𝑥𝑛 : 𝑡 ′ ⊢𝑛 𝑒 ⇒ 𝑒 : 𝑡

Γ ⊢𝑛 𝜆𝑥. 𝑒 ⇒ (𝜆𝑥𝑛 : 𝑡 ′ . 𝑒 : 𝑡) : (𝑡 ′ → 𝑡)
Γ ⊢𝑛+1 𝑒 ⇒ 𝑒 : 𝑡

Γ ⊢𝑛 <𝑒> ⇒ <𝑒 : 𝑡> : <𝑡>

Γ ⊢𝑛 𝑒 ⇒ 𝑒 : <𝑡>

Γ ⊢𝑛+1 ~𝑒 ⇒ ~(𝑒 : <𝑡>) : 𝑡

The type-checker also annotates variable references with the
stage, in addition to the type. A variable bound at stage 𝑛 may be
used at the same stage – or higher (but not lower!). A present-stage
variable may appear within brackets: so-called cross-stage persis-
tence (or, CSP). As one may expect, bracket increments the stage
for its containing expression and escape decrements. Furthermore,
escapes must appear within a bracket.

For example, <<~(<1>)>> has the type <<int>>, the expression
<<𝜆𝑥 . ~(𝑓 𝑥)>> is ill-typed but <<𝜆𝑥. ~(𝑓 <𝑥>)>> is well-typed in
an environment where 𝑓 is bound to a function <int> → <int> at
stage 0. §1 has more examples.

3 Translating brackets and escapes away
After a program is type-checked and converted to the type-annotated
form (a.k.a., Typedtree), we have to compile it. The type-annotated
form contains brackets and escapes, so our compilation has to ac-
count for them. One popular approach [1, 2] is to post-process the
type-annotated expression to eliminate all brackets and escapes.
The post-processed Typedtree then has the same form as in the

ordinary OCaml; therefore, we can use the OCaml back-end (op-
timizer and code generator) as it is – which is what MetaOCaml
does.

Formally, the result of post-processing is the Base calculus en-
riched with code types (as well as string types and literals) and
whose initial environment contains the functions in Fig. 3. We call
this calculus Base1.

The post-processing is actually a family of translations: ⌈𝑒⌉ and
⌈𝑒⌉1

𝑛 , which take a type-annotated expression 𝑒 : 𝑡 of Staged cal-
culus and produce the type-annotated Base1 calculus expression
𝑒′:

⌈𝑒 : 𝑡⌉ = 𝑒′ : 𝑡 ⌈𝑒 : 𝑡⌉1
𝑛 = 𝑒′ : <𝑡> (1)

The expression 𝑒 : 𝑡 in ⌈𝑒 : 𝑡⌉ is a present-stage expression, whereas
in ⌈𝑒⌉1

𝑛 , it is a𝑛+1-stage expression. This post-processing (optimized
in version N102) was employed in BERMetaOCaml until the present
version N114.

The translation ⌈𝑒 : 𝑡⌉ is the identity, until it comes to bracket:

⌈𝑖 : int⌉ = 𝑖 : int ⌈𝑥0 : 𝑡⌉ = 𝑥 : 𝑡 ⌈(𝑒 𝑒′) : 𝑡⌉ = (⌈𝑒⌉ ⌈𝑒′⌉) : 𝑡
⌈(𝜆𝑥0 : 𝑡 ′ . 𝑒 : 𝑡) : 𝑡 ′ → 𝑡⌉ = (𝜆𝑥 : 𝑡 ′ . ⌈𝑒 : 𝑡⌉) : 𝑡 ′ → 𝑡

Switch-over:

⌈<𝑒 : 𝑡>⌉ = ⌈𝑒 : 𝑡⌉1
0 : <𝑡> ⌈~(𝑒 : <𝑡>)⌉1

0 = ⌈𝑒 : <𝑡>⌉

A future-stage translation:

⌈𝑖 : int⌉1
𝑛 = liftint 𝑖 : <int>

⌈𝑥𝑚+1 : 𝑡⌉1
𝑛 = 𝑥 : <𝑡> (𝑚 ≤ 𝑛)

⌈𝑥0 : 𝑡⌉1
𝑛 =

{
mkid𝑡 ”x” :<𝑡> if 𝑥 ∈ Γ𝑖
lift𝑡 𝑥 :<𝑡> otherwise

⌈(𝑒 𝑒′) : 𝑡⌉1
𝑛 = mka ⌈𝑒⌉1

𝑛 ⌈𝑒′⌉1
𝑛 : <𝑡>

⌈𝜆𝑥𝑛+1 : 𝑡 ′ . 𝑒 : 𝑡⌉1
𝑛 = mkl (𝜆𝑥 :<𝑡 ′>. ⌈𝑒 : 𝑡⌉1

𝑛) : <𝑡 ′ → 𝑡>

⌈<𝑒 : 𝑡>⌉1
𝑛 = mkbr ⌈𝑒 : 𝑡⌉1

𝑛+1 : <<𝑡>>

⌈~(𝑒 : <𝑡>)⌉1
𝑛+1 = mkes ⌈𝑒 : <𝑡>⌉1

𝑛 : <𝑡>

lift𝑡 : 𝑡 → <𝑡>
mkid𝑡 : string → <𝑡>
mka : <𝑡2 → 𝑡1> → <𝑡2> → <𝑡1>
mkl : (<𝑡2> → <𝑡1>) → <𝑡2 → 𝑡1>
mkbr : <𝑡> → <<𝑡>>
mkes : <<𝑡>> → <𝑡>

Figure 3. Code-generating combinators

Figure 3 lists the code-generating functions: the producers of
values of the code type.1 Here lift𝑡 is the family indexed by type 𝑡 .2

Type preservation of the translation does not seem obvious: after
all, identifiers at any future stage are translated as present-stage
identifiers, of the same name but at the changed type: <𝑡>, which is
furthermore independent of stage. Likewise, functions at a future
stage are translated into present-stage functions, but at a different
type. We discuss the formal properties in in the next section. At
present we note that all translation equations satisfy (1).

1In MetaOCaml, they are called lift_constant_int, . . . , build_fun, build_apply, etc.
2If such lifting functions exist for all types and how they can be implemented is a
fascinating question that we do not have space to answer.
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For example, the (specialized) eta from §1:

𝜆𝑓 0 :<int>→<int>. <𝜆𝑥1 : int. ~(𝑓 <𝑥>)>
of the type (<int> → <int>) → <int → int> is translated to the
Base1 expression

𝜆𝑓 :<int>→<int>.mkl 𝜆𝑥 :<int>. 𝑓 𝑥

clearly of the same type. The origin of the name eta should be also
clear.

As a more interesting example, consider

<𝜆𝑥1 : int. <𝜆𝑦2 : int. 𝑥 + 𝑦>> : <int → <int → int>>

which has two CSPs, both appearing at stage 2: one is 𝑥 , defined at
stage 1, and the other is addition, defined in the initial environment,
at stage 0. The translated Base1 expression is:

mkl 𝜆𝑥 :<int>.mkbr (mkl 𝜆𝑦 :<int>.mka (mka (mkid "+") 𝑥) 𝑦)
It has the same <int → <int → int>> type, as one can easily verify.

3.1 Optimized translation
A careful look at the translation rules just presented shows many
opportunities for optimization. First of all, since ⌈−⌉ is mostly the
identity, it is tempting to cut it out and hence eliminate the useless
traversing and rebuilding of the Typedtree. Furthermore, ⌈−⌉1

𝑛 does
not essentially use 𝑛 and can be simplified.

We now present the optimized translation. To avoid ⌈−⌉ it re-
quires the integration with the type checker. In principle, we can
combine the translation and the type reconstruction completely.
For example, the type reconstruction judgments for integer literals
would then become:

Γ ⊢0 𝑖 ⇒ 𝑖 : int Γ ⊢𝑛+1 𝑖 ⇒ liftint 𝑖 : <int>
That would unwise, however: we have to effectively duplicate the
type checking rules, for stage 0 and stage > 0. A better idea is
to leave the stage-invariant rules (which is most of them) as they
are and introduce a selective translation ⌊𝑒 : 𝑡⌋, defined as the
simplified ⌈𝑒 : 𝑡⌉1

0, to wit:3

⌊𝑖 : int⌋ = liftint 𝑖 : <int>
⌊𝑥𝑚+1 : 𝑡⌋ = 𝑥 : <𝑡>

⌊𝑥0 : 𝑡⌋ =
{
mkid𝑡 ”x” :<𝑡> if 𝑥 ∈ Γ𝑖
lift𝑡 𝑥 :<𝑡> otherwise

⌊(𝑒 𝑒′) : 𝑡⌋ = mka ⌊𝑒⌋ ⌊𝑒′⌋ : <𝑡>
⌊𝜆𝑥𝑛+1 : 𝑡 ′ . 𝑒 : 𝑡⌋ = mkl (𝜆𝑥 :<𝑡 ′>. ⌊𝑒 : 𝑡⌋) : <𝑡 ′ → 𝑡>

⌊~(𝑒 : <𝑡>)⌋ = 𝑒 : <𝑡>

The typing judgment is now Γ ⊢𝑛 𝑒 ⇒ 𝑒′ : 𝑡 where 𝑒 is an
(un-annotated) expression of the Staged calculus and 𝑒′ is the
type-annotated expression of Base1 extended with ~𝑒 and stage-
annotated variables. (Bindings in Γ are also stage-annotated. For
present stage, the annotation may be dropped.) Such extended cal-
culus is called Base2. Quite unexpectedly, Base2 has no need for
brackets; it only needs escapes, hence the changes to the OCaml
Typedtree are minimal. In fact, there are no changes at all, thanks to
Typedtree attributes: an escape is indicated by a dedicated attribute
attached to a Typedtree node.

Figure 4 presents the pseudo-code of the optimized translation
integrated with type reconstruction. The figure makes it clear how
3performed by trx_translate of typing/trx.ml

Γ ⊢𝑛 𝑖 ⇒ 𝑖 : int
𝑥𝑚 : 𝑡 ∈ Γ

𝑚 ≤ 𝑛
Γ ⊢𝑛 𝑥 ⇒ 𝑥𝑚 : 𝑡

Γ ⊢𝑛 𝑒 ⇒ 𝑒 : 𝑡 ′ → 𝑡 Γ ⊢𝑛 𝑒′ ⇒ 𝑒′ : 𝑡 ′

Γ ⊢𝑛 𝑒 𝑒′ ⇒ (𝑒 : (𝑡 ′ → 𝑡) 𝑒′ : 𝑡 ′) : 𝑡

Γ, 𝑥𝑛 : 𝑡 ′ ⊢𝑛 𝑒 ⇒ 𝑒 : 𝑡

Γ ⊢𝑛 𝜆𝑥. 𝑒 ⇒ (𝜆𝑥𝑛 : 𝑡 ′ . 𝑒 : 𝑡) : (𝑡 ′ → 𝑡)
Γ ⊢1 𝑒 ⇒ 𝑒 : 𝑡

Γ ⊢0 <𝑒> ⇒ ⌊𝑒 : 𝑡⌋ : <𝑡>

Γ ⊢𝑛+2 𝑒 ⇒ 𝑒 : 𝑡

Γ ⊢𝑛+1 <𝑒> ⇒ ~(mkbr ⌊𝑒 : 𝑡⌋) : <𝑡>
Γ ⊢0 𝑒 ⇒ 𝑒 : <𝑡>

Γ ⊢1 ~𝑒 ⇒ ~(𝑒 : <𝑡>) : 𝑡

Γ ⊢𝑛+1 𝑒 ⇒ 𝑒 : <𝑡>

Γ ⊢𝑛+2 ~𝑒 ⇒ ~(mkes ⌊𝑒 : <𝑡>⌋) : 𝑡

Figure 4. Type-checking and translation of Staged into Base2.

the Base type reconstruction – that is, the Typedtree construction
in the ordinary OCaml – has to be modified for staging. Most of
the rules (see constant and application rules) are unmodified. We
still need to maintain the stage (as a global mutable variable in
the current implementation). The rule for lambda (and other bind-
ing forms) has to annotate the bound variable with its stage as
it is put into the environment. We do it by adding an attribute
bearing the stage to the value_description of the variable. The vari-
able rule has to check that the stage of the variable is less than or
equal the current stage, and to put the stage-annotated variable
into Typedtree. In the implementation, nothing needs to be done
for the latter: The Texp_ident node of the Typedtree carries the
value_description taken from the environment, which already has
the stage attribute. The only significant changes are the rules for
brackets and escapes (represented in Parsetree as extension nodes).

The selective translation ⌊−⌋ is indeed done only on the parts of
the overall Typedtree that represent future-stage sub-expressions.
Therefore, when compiling plain OCaml programs, MetaOCaml
imposes no overhead.

Proposition. If Γ ⊢𝑛 𝑒 ⇒ 𝑒 : 𝑡 in the Staged calculus then
Γ ⊢𝑛 𝑒 ⇒ 𝑒′ : 𝑡 in the optimized translation.

Proposition. If Γ ⊢𝑛 𝑒 ⇒ 𝑒′ : 𝑡 , then 𝑒′ has no nested escapes.

Corollary. If Γ𝑖 ⊢0 𝑒 ⇒ 𝑒′ : 𝑡 than 𝑒′ is strictly a Base1 expres-
sion: it contains no escape nodes or stage-annotated bindings. The
type reconstruction hence gives the ordinary OCaml Typedtree,
which can then be processed by the OCaml back end as is.

Theorem. If Γ ⊢0 𝑒 ⇒ 𝑒′ : 𝑡 then Γ ⊢ 𝑒′ ⇒ 𝑒′ : 𝑡 in Base1 where
𝑒′ is 𝑒′ with all type annotations removed.

4 Related work
The idea of implementing code templates by a translation into code
combinators can be traced back to Lisp: quasi-quotes are commonly
implemented as macros, expanding into S-expression combinators
(cons and list).

The translation ⌈−⌉ and ⌈−⌉1
𝑛 was implemented in BER Meta-

OCaml N101 described in [4]. The translation however was not
presented formally. It is similar to [1, Figure 3]. However, our trans-
lation is typed. Mainly, we use code combinators instead of data
types and may hence keep the code representation abstract. The

3
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biggest difference is the translation of functions (and other bind-
ing forms such as let expressions, pattern matching and for-loops).
We do not use gensym, employing higher-order abstract syntax
instead: we translate a future-stage function also into a present-
stage function, but of a different type, which is then passed to the
combinator mkl. The combinator, among other things, enforces the
region discipline for future-stage variables and checks for scope
extrusion, as described in [4].

The optimized translation in §3.1 is novel: the present paper is
the first presentation of it – and BER MetaOCaml N114 is the first
implementation.

5 Need multiple stages?
One may have noticed that the eta-generator-generator etah in
§1 was rather contrived. That is no accident: there are hardly any
realistic examples of needing more than one future stage. This has
been noticed before. In his retrospective [6], Sheard writes: “There
is no limit to the number of stages in a MetaML program. This has
been useful theoretically, but has found very little practical use.
Programmers find it hard to write programs with more than a few
stages.” [6, §21]

The only somewhat realistic case I am aware of is generating code
that includes a run-time specializer (evoking just-in-time compila-
tion): for example, generating code for power n x simultaneously
with the code to specialize the power function to a specific value of
n, and the overall driver that switches to the specialized version if

power n xwas invoked for a specific n often enough. (This example
was suggested by Sven Bodo Sholz.) Even then, such an example
seems better implemented using the tagless-final approach coupled
with one-future-stage staging.

I would like to ask the readers if there is a value in continuing
to maintain the ability to nest brackets arbitrarily. If not, it would
make sense to limit the bracket nesting to the single level, which
notably simplifies the implementation.4
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