
Sound and Efficient Language-Integrated
Query

Maintaining the ORDER

Oleg Kiselyov Tatsuya Katsushima

Tohoku University, Japan

APLAS 2017
November, 2017

2

Outline

I Motivation

Core SQUR

Core SQUR with Ranking

Conclusions

3

Stackoverflow Motivation

“Query with ORDER BY in a FROM subquery produces unordered
result. Is this a bug? Below is an example of this:

SELECT field1, field2
FROM (SELECT field1, field2 FROM table1 ORDER BY field2) alias

returns a result set that is not necessarily ordered by field2.”
https://mariadb.com/kb/en/mariadb/

why-is-order-by-in-a-from-subquery-ignored/

https://mariadb.com/kb/en/mariadb/why-is-order-by-in-a-from-subquery-ignored/
https://mariadb.com/kb/en/mariadb/why-is-order-by-in-a-from-subquery-ignored/

3

Stackoverflow Motivation

“Query with ORDER BY in a FROM subquery produces unordered
result. Is this a bug? Below is an example of this:

SELECT field1, field2
FROM (SELECT field1, field2 FROM table1 ORDER BY field2) alias

returns a result set that is not necessarily ordered by field2.”
https://mariadb.com/kb/en/mariadb/

why-is-order-by-in-a-from-subquery-ignored/

“A ”table” (and subquery in the FROM clause too) is – according
to the SQL standard – an unordered set of rows.... That’s why
the optimizer can ignore the ORDER BY clause that you have
specified. In fact, SQL standard does not even allow the ORDER

BY clause to appear in this subquery (we allow it, because
ORDER BY. . . LIMIT changes the result, the set of rows, not only
their order).”

https://mariadb.com/kb/en/mariadb/why-is-order-by-in-a-from-subquery-ignored/
https://mariadb.com/kb/en/mariadb/why-is-order-by-in-a-from-subquery-ignored/

4

Stackoverflow Motivation

“I am using an application (MapServer) that wraps SQL
statements, so that the ORDER BY statement is in the inner
query. E.g.

SELECT ∗ FROM (SELECT ID, GEOM, Name FROM t ORDER BY Name) as tbl

The application has many different database drivers. I mainly
use the MS SQL Server driver, and SQL Server 2008. This
throws an error if an ORDER BY is found in a subquery.”
http://dba.stackexchange.com/questions/82930/

database-implementations-of-order-by-in-a-subquery

“However the same type of query when run in Postgres (9) and
Oracle return results - with the order as defined in the
subquery. In Postgres the query plan shows the results are
sorted and the Postgres release notes include the item which
implies subquery orders are used...”

http://dba.stackexchange.com/questions/82930/database-implementations-of-order-by-in-a-subquery
http://dba.stackexchange.com/questions/82930/database-implementations-of-order-by-in-a-subquery

5

ORDER BY in a subquery

I Not allowed at all

I Allowed but ignored

I Allowed and followed

5

ORDER BY in a subquery

I Not allowed at all
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed but ignored

I Allowed and followed

5

ORDER BY in a subquery

I Not allowed at all
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed but ignored

I Allowed and followed

5

ORDER BY in a subquery

I Not allowed at all
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed but ignored
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed and followed

5

ORDER BY in a subquery

I Not allowed at all
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed but ignored
. . . unless LIMIT or TOP or FOR XML are also present
. . . but not unless TOP 100%

I Allowed and followed

5

ORDER BY in a subquery

I Not allowed at all
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed but ignored
. . . unless LIMIT or TOP or FOR XML are also present
. . . but not unless TOP 100%

I Allowed and followed

5

ORDER BY in a subquery

I Not allowed at all
. . . unless LIMIT or TOP or FOR XML are also present

I Allowed but ignored
. . . unless LIMIT or TOP or FOR XML are also present
. . . but not unless TOP 100%

I Allowed and followed
. . . unless the subquery is too complex

depending on a database system or its version

6

Motivation 1

ORDER BY in a subquery is akin to undefined behavior in C

Just say NO!

Just write the perfect code: there will be no bugs

But even then...

6

Motivation 1

ORDER BY in a subquery is akin to undefined behavior in C

Just say NO!

Just write the perfect code: there will be no bugs

But even then...

6

Motivation 1

ORDER BY in a subquery is akin to undefined behavior in C

Just say NO!

Just write the perfect code: there will be no bugs

But even then...

7

Stackoverflow Motivation

“I am using an application (MapServer) that wraps SQL
statements, so that the ORDER BY statement is in the inner
query. E.g.

SELECT ∗ FROM (SELECT ID, GEOM, Name FROM t ORDER BY Name) as tbl

The application has many different database drivers. I mainly
use the MS SQL Server driver, and SQL Server 2008. This
throws an error if an ORDER BY is found in a subquery.”
http://dba.stackexchange.com/questions/82930/

database-implementations-of-order-by-in-a-subquery

http://dba.stackexchange.com/questions/82930/database-implementations-of-order-by-in-a-subquery
http://dba.stackexchange.com/questions/82930/database-implementations-of-order-by-in-a-subquery

8

Motivation 1

Why do people, and MapServer (and HRR, Opaleye, . . .)
keep writing ORDER BY in subqueries?

Modularity, Reuse, Compositionality

8

Motivation 1

Why do people, and MapServer (and HRR, Opaleye, . . .)
keep writing ORDER BY in subqueries?

Modularity, Reuse, Compositionality

9

Nested Relational Calculus

for(e ← table employee) where e.wage>20 yield e

SELECT E.∗ FROM employee as E WHERE E.wage > 20

10

Language Integrated Query

for(e ← table employee) where e.wage>20 yield e

module Qe (S:SYM SCHEMA) = struct open S
let res = fun wage thr →

foreach (table t employee) @@ fun e →
where (wage e > wage thr) @@ fun () →
yield e

end

11

Language Integrated Query

for (e ← table employee) for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

module Qd(S:SYM SCHEMA) = struct open S
let res = fun emp →

foreach emp @@ fun e →
foreach (table t department) @@ fun d →
where (deptID e = deptID d) @@ fun () →
yield (emp report (name e) (name d) (wage e))

end

12

Query Composition

Qd.res (Qe.res 20)

for (e ← for(e ← table employee) where e.wage>20 yield e)
for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM department D,

(SELECT E.∗ FROM employee as E WHERE E.wage > 20) E
WHERE D.deptID=E.deptID

12

Query Composition

Qd.res (Qe.res 20)

for (e ← for(e ← table employee) where e.wage>20 yield e)
for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM department D,

(SELECT E.∗ FROM employee as E WHERE E.wage > 20) E
WHERE D.deptID=E.deptID

13

Motivation 1

How ORDER BY hurts

The meaning of ORDER BY differs depending on:

I if attached to the top query

I if accompanied by LIMIT

I if appearing in a subquery

Need a compositional semantics of ORDER BY

13

Motivation 1

How ORDER BY hurts

The meaning of ORDER BY differs depending on:

I if attached to the top query

I if accompanied by LIMIT

I if appearing in a subquery

Need a compositional semantics of ORDER BY

14

Query Normalization

for (e ← for(e ← table employee) where e.wage>20 yield e)
for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM department D, employee E
WHERE D.deptID=E.deptID AND E.wage > 20

15

Motivation 2

How to normalize language-integrated queries with ranking

Normalization is now a must: subqueries with ranking have no
well-defined and portable semantics

16

Ranking Challenges

Distributivity laws of UNION ALL

for(x ← e1] e2) e ≡ (for(x←e1) e)] (for(x←e2) e)
for(x ← e) e1] e2 ≡ (for(x←e) e1)] (for(x←e) e2)
where e e1] e2 ≡ (where e e1)] (where e e2)

ordering wage (for(x ← e1] e2) e) 6≡
(ordering wage (for(x←e1) e))] (ordering wage (for(x←e2) e))

17

Motivation 2

How to normalize language-integrated queries with ranking

Normalization is now a must: subqueries with ranking have no
well-defined and portable semantics

What are the equational laws for queries with ranking?

18

Motivations

I How to use ORDER BY in language-integrated queries and
know what they mean?

I How to generate portable SQL from composed queries?

I What does ORDER BY actually mean?

I What are the equational laws for queries with ranking?

Denotational semantics made simple

18

Motivations

I How to use ORDER BY in language-integrated queries and
know what they mean?

I How to generate portable SQL from composed queries?

I What does ORDER BY actually mean?

I What are the equational laws for queries with ranking?

Denotational semantics made simple

18

Motivations

I How to use ORDER BY in language-integrated queries and
know what they mean?

I How to generate portable SQL from composed queries?

I What does ORDER BY actually mean?

I What are the equational laws for queries with ranking?

Denotational semantics made simple

19

Outline

Motivation

I Core SQUR

Core SQUR with Ranking

Conclusions

20

SQUR, formally

Variables x,y,z. . .
Constants c (integers, booleans, tables, etc.)
Numeric Literals n, m
Record Labels l
Effect Annotations ε
Base Types b ::= int | bool | string

Flat Types t ::= b | <l:b,. . .>

Types s ::= t | t bagˆε | t tbl

Type Environment Γ ::= x:t, y:t tbl, . . .

Expressions
e ::= c | x | e + e | <l=e,. . .> | e.l
| for(x←e) e | e] e
| where e e | yield e | table e

There are no λ

20

SQUR, formally

Variables x,y,z. . .
Constants c (integers, booleans, tables, etc.)
Numeric Literals n, m
Record Labels l
Effect Annotations ε
Base Types b ::= int | bool | string

Flat Types t ::= b | <l:b,. . .>

Types s ::= t | t bagˆε | t tbl

Type Environment Γ ::= x:t, y:t tbl, . . .

Expressions
e ::= c | x | e + e | <l=e,. . .> | e.l
| for(x←e) e | e] e
| where e e | yield e | table e

There are no λ

21

Type System

Const
Γ ` employee: <name:string, deptID: int , wage:int> tbl

Γ ` e: t tbl
Table

Γ ` table e : t bagˆφ

Γ ` e1 : t bagˆε Γ ` e2: t bagˆε
UnionAll

Γ ` e1] e2 : t bagˆε

Γ ` e1 : t1 bagˆφ Γ,x:t1 ` e2: t2 bagˆε
For

Γ ` for(x←e1) e2 : t2 bagˆε

22

Denotational Semantics: Types

T [int] = N
T [bool] = {T, F}

T [<l1:b1,. . . ,ln:bn>] = l1:T [b1] × · · ·× ln:T [bn]
T [t tbl] = {{T [t]}}
T [t bag] = {{T [t]}}

T [x1:t1,. . . ,xn:tn] = x1:T [t1] × · · ·× xn:T [tn]

The very standard and conventional multiset semantics

23

Denotational Semantics: Values

E [Γ ` c: s] ρ ∈ T [s]

E [Γ ` bag empty: t bag] ρ = {{}}
E [Γ ` x: t] ρ = ρ.x
E [Γ ` e1 + e2: int] ρ =
E [Γ ` e1: int]ρ + E [Γ ` e2: int]ρ

23

Denotational Semantics: Values

E [Γ ` e1] e2: t bag] ρ =
E [Γ ` e1: t bag]ρ ∪ E [Γ ` e2: t bag]ρ

E [Γ ` yield e: t bag] ρ = {{ E [Γ ` e: t]ρ }}
E [Γ ` where e1 e: t bag] ρ =

if E [Γ ` e1: bool]ρ then E [Γ ` e: t bag]ρ else {{}}

E [Γ ` for(x←e1) e: t bag] ρ =⋃
{{ E [Γ,x:t1 ` e: t bag] (ρ× x : x′) |

x′←E [Γ ` e1: t1 bag]ρ }}

for(x←e1) e is truly a bag (multiset) comprehension

24

Application: Distributivity Laws

Distributivity laws of UNION ALL

for(x ← e1] e2) e ≡ (for(x←e1) e)] (for(x←e2) e)
for(x ← e) e1] e2 ≡ (for(x←e) e1)] (for(x←e) e2)
where e e1] e2 ≡ (where e e1)] (where e e2)

25

Application: NBE

Normalization by Rewriting

I Syntactic: term re-writing

I Non-deterministic

I Need to assure (prove) confluence and termination

I Normal form emerges as the result
(hope it is translatable to SQL)

Normalization by Evaluation

I Normal form is designed first, to be translatable to SQL

I Semantic: non-standard evaluation

I Deterministic and terminating

26

NBE

T n[int] = N⊕ Eint

En[Γ ` 0: int] ρ = 0

En[Γ ` e1 + e2: int] ρ = add (En[Γ ` e1: int] ρ) (En[Γ ` e2: int] ρ)
add 0 x = x
add x 0 = x
add n m = n+m n,m ∈ N
add x y = inr (I[x] + I[y])

I[−]: T n[s] → Es

I[0] = 0
I[inr e] = e

In for (x←table t1) yield 1+2+x, En[1+2+x] is inr (3+x)

27

NBE: Bags

T n[t bag] =
{{ fors(x←M. . .) whr T n[bool] yld T n[t] }}

En[Γ ` bag empty: t bag] ρ =
{{}}

En[Γ ` e1] e2: t bag] ρ =
En[Γ ` e1: t bag]ρ ∪ En[Γ ` e2: t bag]ρ

28

NBE: Bags

En[Γ ` yield e: t bag] ρ =
{{ fors () whr T yld En[Γ ` e: t]ρ }}

En[Γ ` table m: t bag] ρ =
{{ fors (u←m) whr T yld u }} and u is fresh

En[Γ ` where e1 e: t bag] ρ =
where′ (En[Γ ` e1: bool]ρ) (En[Γ ` e: t bag]ρ) where

where′ T xs = xs
where′ F xs = {{}}
where′ t xs =

{{ fors (x←m. . .) whr w ∧ t yld y
| fors (x←m. . .) whr w yld y ← xs}}

29

NBE: Bags

En[Γ ` for(x←e1) e: t bag] ρ =
{{ fors (x’←m’,. . . x’’←m’’,. . .) whr w′ ∧ w′′ yld y′′ |

fors (x’←m’. . .) whr w′ yld y′ ← En[Γ ` e1: t1 bag]ρ,
fors (x’’←m’’. . .) whr w′′ yld y′′ ←

En[Γ,x:t1 ` e: t bag](ρ×x:y′) }}

I[{{}}] = bag empty

I[xs] =
] {{ for(x←table m) . . . where I[w] yield I[y] |

fors(x←m. . .) whr w yld y ← xs}}
(the where clause is omitted if w is T)

30

Query Normalization

query:
for (e ← for(e ← table employee) where e.wage>20 yield e)
for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

En[` query : <name,dep,wage> bag]:

{{ fors(e←employee d←department)
whr (e.deptID = d.deptID && e.wage>20)
yld <name=e.name, dep=d.name, wage=e.wage>

}}

I[En[` query : <name,dep,wage> bag]]:

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
yield <name=e.name, dep=d.name, wage=e.wage>

31

Formal Properties

Theorem (Type Preservation)

For all Γ ` e:s and ρ ∈ T n[Γ], it holds Γ’ ` I[En[e]ρ], where Γ’
lists the variables in the domain of ρ and their types.

Theorem (Soundness of NBE)

For all SQUR expressions Γ ` e:s, and environments ρ and ρ’
of appropriate types, E [I[En[e]ρ]]ρ’ is equal to E [e](E [I[ρ]]ρ’).

32

Normalization, Formally

Definition (Normal form)

We call I[En[e]<>] the normal form N [e] of a closed term e

Theorem (Correctness of normal form)

If e is a closed term of the type s, then

(a) N [e] exists

(b) ` N [e]:s

(c) N [N [e]] = N [e]

(d) E [e] = E [N [e]]

33

SQL Translation

{{ fors(e←employee d←department)
whr (e.deptID = d.deptID && e.wage>20)
yld <name=e.name, dep=d.name, wage=e.wage>

}}

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM department D, employee E
WHERE D.deptID=E.deptID AND E.wage > 20

34

Outline

Motivation

Core SQUR

I Core SQUR with Ranking

Conclusions

35

Ordering and Subranging

for(e ← table employee) where e.wage>20
ordering wage e.wage yield e

SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage

for(e ← table employee) where e.wage>20
limit (3,1) ordering wage e.wage yield e

SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage
LIMIT 3 OFFSET 1

35

Ordering and Subranging

for(e ← table employee) where e.wage>20
ordering wage e.wage yield e

SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage

for(e ← table employee) where e.wage>20
limit (3,1) ordering wage e.wage yield e

SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage
LIMIT 3 OFFSET 1

36

SQUR with ranking

Ordering Effects o:[olabel,. . .], l:(n,m)

Ordering Labels owage,. . .

Expressions
e +:= ordering wage e1 e | limit (n,m) e
| let table x = e in e

37

SQUR with ranking: Types

Γ ` e1 : int Γ ` e: t bagˆε ε ⊆ {o:[lb,. . .]}
Ordering

Γ ` ordering wage e1 e : t bagˆ{o:[owage,lb,. . .]}

Γ ` e: t bagˆε ε = {o:[lb,. . .]}
Limit

Γ ` limit (n,m) e : t bagˆ(ε ∪ {l :(n,m)})

Γ ` e1 : t1 bagˆε1 ε1 ⊆ {o:[lb,. . .]} Γ,x:t1 ` e2: t2 bagˆε
For

Γ ` for(x←e1) e2 : t2 bagˆε

` e1 : t1 bagˆε1 Γ,y:t1 tbl ` e2: t2 bagˆε
Let

Γ ` let table y=e1 in e2 : t2 bagˆε

38

Denotation of Ranking

T [t bagˆφ] = {{ T [t] }}
T [t bagˆ{o:[lb,. . .]}] = {{ T [t] × o:(N × . . .) }}
T [t bagˆ{o:[lb,. . .],l:(n,m)}] =
{{ T [t] × o:(N × . . .) × l:(N × N) }}

E [Γ ` for(x←e1) e: t bagˆε] ρ =⋃
{{ E [Γ,x:t1 ` e: t bagˆε] (ρ× x : x′) |

x′ × o: ←E [Γ ` e1: t1 bagˆε’]ρ }}

39

Denotation of Ranking

E [Γ ` ordering lb e1 e: t bagˆ{o:[lb]}] ρ =
{{ x × o:[E [e1]ρ] | x ← E [Γ ` e: t bagˆφ]ρ }}

E [Γ ` ordering lb e1 e: t bagˆε] ρ =
{{ x × o:[E [e1]ρ,lb’,. . .] |

x × o:[lb’,. . .] ← E [Γ ` e: t bagˆε1]ρ }}
where ε1={o:[lb’,. . .]} and ε={o:[lb,lb’,. . .]}

E [Γ ` limit (n,m) e: t bagˆ{ε U l:(n,m)}] ρ =
{{ x × l:(n,m) | x ← E [Γ ` e: t bagˆε]ρ }}

E [Γ ` let table y=e1 in e: t bagˆε] ρ =
E [Γ,y:t1 tbl ` e: t bagˆε] (ρ × y:M[` e1: t1 bagˆε1])

40

Denotation of Ranking

M[` e: t bagˆε] ∈ { sequence[T [t]] }

M[` e: t bagˆφ] = E [` e: t bagˆφ]<>

M[` e: t bagˆε] =
subrange (n,m) ◦ sort keys

{{ x | x × o:keys × l:(n,m) ← E [` e: t bagˆε]<> }}

(no subranging if the l annotation is absent)

41

Application: Distributivity Laws

UNION ALL is associative and symmetric
Furthermore,

Theorem (Distributive Equational Laws of UNION ALL)

for(x ← e1] e2) e ≡ (for(x←e1) e)] (for(x←e2) e)
for(x ← e) e1] e2 ≡ (for(x←e) e1)] (for(x←e) e2)
where e e1] e2 ≡ (where e e1)] (where e e2)
ordering lb e (e1] e2) ≡ (ordering lb e e1)] (ordering lb e e2)
limit (n,m) (e1] e2) ≡ (limit (n,m) e1)] (limit (n,m) e2)

42

Sample Normalization

for (e ←
for(e ← table employee) where e.wage>20
ordering wage e.wage yield e)

for (d ← table department)
where e.deptID = d.deptID ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM employee as E, department as D
WHERE E.deptID = D.deptID AND E.wage > 20
ORDER BY D.deptID

42

Sample Normalization

for (e ←
for(e ← table employee) where e.wage>20
ordering wage e.wage yield e)

for (d ← table department)
where e.deptID = d.deptID ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM employee as E, department as D
WHERE E.deptID = D.deptID AND E.wage > 20
ORDER BY D.deptID

43

Sample Normalization

let table t =
for(e ← table employee) where e.wage>20
limit (3,1) ordering wage e.wage yield e

in
for (e ← table t) for (d ← table department)
where e.deptID = d.deptID ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

WITH t8 AS (SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage LIMIT 3 OFFSET 1)

SELECT t9.name, t7.name, t9.wage FROM department AS t7, t8 AS t9
WHERE t9.deptID = t7.deptID ORDER BY t7.deptID

44

Outline

Motivation

Core SQUR

Core SQUR with Ranking

I Conclusions

45

Conclusions

The first compositional, denotational treatment of ORDER
BY and LIMIT...OFFSET
application for optimizing composed queries to yield efficient
and portable SQL

I new calculus SQUR with ranking, the sound type system
and denotational semantics

I Equational laws
UNION ALL is still distributive and symmetric, even with
ranking

I Normalization-by-evaluation

I Ranking as an effect

http://okmij.org/ftp/meta-programming/Sqr/

http://okmij.org/ftp/meta-programming/Sqr/

	Motivation
	Core SQUR
	Core SQUR with Ranking
	Conclusions

